Vol. 50
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-03-28
Design Method of Miniaturized Ring Coupler Using Phase Shifters Consisting of Fully-Distributed Composite Right/Left-Handed Structures
By
Progress In Electromagnetics Research B, Vol. 50, 61-76, 2013
Abstract
A new method to design a miniaturized ring coupler consisting of multiple open stubs on the inside of the ring is proposed. It is shown that this coupler topology may be seen as fully-distributed composite right/left handed (CRLH) small-size phase shifters, cascaded in a ring configuration. The CRLH phase shifter is analyzed in detail and a design method is proposed, pointing out the condition to obtain a reduction of its length. Using the fully-distributed CRLH based phase shifter, a ring coupler is configured and analyzed in comparison with the traditional ring coupler, showing that both couplers have similar characteristics. To validate the proposed design method, a 3-dB CRLH based ring coupler is designed and fabricated. The experimental results show a very good agreement with the predicted results obtained by electromagnetic simulation. The printed area of the fabricated coupler is 49% smaller compared to the traditional ring coupler.
Citation
Stefan Simion, "Design Method of Miniaturized Ring Coupler Using Phase Shifters Consisting of Fully-Distributed Composite Right/Left-Handed Structures," Progress In Electromagnetics Research B, Vol. 50, 61-76, 2013.
doi:10.2528/PIERB13021001
References

1. Pon, , C. Y., "Hybrid-ring directional coupler for arbitrary power divisions," IRE Trans. Microwave Theory and Techniques, Vol. 9, 529-535, Nov. 1961.
doi:10.1109/TMTT.1961.1125385

2. Kim, , D. I. and G. S. Yang, "Design of new hybrid-ring directional coupler using /8 or /6 sections," IEEE Trans. on Microwave Theory and Techniques, Vol. 39, 1179-1784, Oct. 1991.
doi:10.1109/22.106542

3. Coupez, , J. P., A. Peden, and C. Person, "Analysis and design of ultra miniature hybrid ring directional coupler," Proc. 22nd European Microwave Conf., Vol. 1, 443-447, 1992.

4. Murgulescu, , M. H., M. Moisan, P. Legaud, E. Penard, and I. Zaquine, "New wideband, 0.67g circumference 180 hybrid ring coupler," Electronics Letters, Vol. 30, No. 4, 299-300, Feb. 1994.
doi:10.1049/el:19940234

5. Murgulescu, , M. H., E. Penard, and I. Zaquine, "Design formulas for generalized 180 hybrid ring couplers," Electronics Letters, Vol. 30, No. 7, 573-574, 1994.
doi:10.1049/el:19940415

6. Wang, T. and K.Wu, "Size-reduction and band-broadening design technique of uniplanar hybrid ring coupler using phase inverter for M(H)MIC's," IEEE Trans. on Microwave Theory and Techniques, Vol. 47, 198-206, Feb. 1999.
doi:10.1109/22.744295

7. Chi, , P. L., "Miniaturized ring coupler with arbitrary power divisions based on the composite right/left-handed transmission lines," IEEE Microwave and Wireless Components Letters, Vol. 22, 170-172, Apr. 2012.
doi:10.1109/LMWC.2012.2189376

8. Okabe, , H., C. Caloz, and T. Itoh, "A compact enhanced-bandwidth hybrid ring using an artificial lumped-element left-handed transmission-line section," IEEE Trans. on Microwave Theory and Techniques, Vol. 52, 798-804, Mar. 2004.
doi:10.1109/TMTT.2004.823541

9. Fouda, , A. E., A. M. E. Safwat, and H. El-Hennawy, "On the applications of the coupled-line composite right/left-handed unit cell," IEEE Trans. on Microwave Theory and Techniques,, Vol. 58, 1584-1591, Jun. 2010.
doi:10.1109/TMTT.2010.2049162

10. Chuang, M. L., "Miniaturized ring coupler of arbitrary reduced size," IEEE Microwave and Wireless Components Letters, Vol. 15, 16-18, Jan. 2005.
doi:10.1109/LMWC.2004.840960

11. Simion, , S., "Small-size ring coupler design method based on fully distributed composite right/left handed approach ," Electronics Letters,, Vol. 48, No. 23, 1481-1483, Nov. 2012.
doi:10.1049/el.2012.2620

12. Kim, , D. I. and Y. Naito, "Broad-band design of improved hybrid-ring 3-dB directional couplers," IEEE Trans. on Microwave Theory and Techniques, Vol. 30, No. 11, 2040-2046, Nov. 1982.
doi:10.1109/TMTT.1982.1131373

13. Ho, , C. H., L. Fan, and K. Chang, "Broadband uniplanar hybrid ring coupler," Electronics Letters , Vol. 29, No. 1, 44-45, Jan. 1993.
doi:10.1049/el:19930029

14. Chi, P. L. and T. Itoh, "Miniaturized dual-band directional couplers using composite right/left-handed transmission structures and their applications in beam pattern diversity systems," IEEE Trans. on Microwave Theory and Techniques, Vol. 57, 1207-1215, May 2009.

15. Pozar, , M. D., Microwave Engineering, 3rd Ed., Wiley, New York, 2005.