Vol. 50
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-04-02
On Performance of High-Efficiency Ferrite Meander Antenna (Hema) for MIMO Communications
By
Progress In Electromagnetics Research B, Vol. 50, 177-199, 2013
Abstract
This paper presents a high-efficiency ferrite meander antenna (HEMA), which can be used to realize a 2×2 multiple-input-multiple-output (MIMO) communication system when it is used at both the transmitter and the receiver ends. This antenna is designed to operate at 2.45 GHz center frequency (fc). It consists of two spatially separated half-cycle microstrip meander structures. Ferrite material is not used for the entire substrate, only beneath each meander structure. A standard FR-4 substrate is utilized as a system board. Impedance bandwidth and radiation patterns of the fabricated antenna are measured and compared with those of the simulation results. The -10 dB impedance bandwidth of the fabricated antenna is 262 MHz, whereas the simulated bandwidth is 235 MHz. According to the simulations, the gain and efficiency of the antenna are 2.2 dB and 81%, respectively. The efficiency of the antenna is confirmed by measurements. By using the simulated radiation patterns, correlation between the radiation patterns is calculated and employed in the generation of the channel matrix. Mutual impedance of the antennas and antenna efficiency are also included in the channel matrix, which in turn is used in bit error rate (BER) and ergodic capacity simulations. BER and ergodic capacity are utilized as performance metrics. The effect of antenna efficiency, mutual impedance of the antennas, and correlation between radiation patterns on system performance are presented.
Citation
Chandana K.K. Jayasooriya, Hyuck M. Kwon, Ryan Syslo, Yang-Ki Hong, Jae-Jin Lee, and Gavin Abo, "On Performance of High-Efficiency Ferrite Meander Antenna (Hema) for MIMO Communications," Progress In Electromagnetics Research B, Vol. 50, 177-199, 2013.
doi:10.2528/PIERB13021404
References

1. Telatar, , E., "Capacity of multiantenna Gaussian channels," European Transactions on Telecommunications, Vol. 10, 585-596, Nov. 1999.
doi:10.1002/ett.4460100604        Google Scholar

2. Foschini, , G. S. and M. J. Gans, "On limits of wireless communications in a fading environment when using multiple antennas," Wireless Personal Communications , Vol. 6, 311-335, Mar. 1998.
doi:10.1023/A:1008889222784        Google Scholar

3. Andrews, , M. R., P. P. Mitra, and R. deCarvalho, "Trippling the capacity of wireless communications using electromagnetic polarization," Nature, Vol. 409, 316-318, Jan. 2001.
doi:10.1038/35053015        Google Scholar

4. Dong, L., H. Ling, and R. W. Heath, Jr., "Multiple-input-multiple-output wireless communication systems using antenna patttern diversity," IEEE Global Telecommunications Conference, GLOBECOMM' 2002, 997-1001, Nov. 2002.
doi:10.1109/GLOCOM.2002.1188227        Google Scholar

5. Vaughan, , R. G. and J. B. Anderson, "A multiport patch antenna for mobile communications," Proceedings of 14th European Microwave Conference , 607-612, Oct. 1984.        Google Scholar

6. Vaughan, , R. G., "Two-port higher mode circular microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 36, 309-321, Mar. 1988.
doi:10.1109/8.192112        Google Scholar

7. Dammerle, , F. and W. Wiesbeck, "A biconical multibeam antenna for space-division multiple access," IEEE Transactions on Antennas and Propagation, Vol. 46, 782-787, Jun. 1998..
doi:10.1109/8.686762        Google Scholar

8. Forenza, , A., R. W. Heath, and Jr., "Benefit of pattern diversity via two-element array of circular patch antennas in indoor clustered MIMO channels," IEEE Transactions on Communications,, Vol. 54, 943-954, May 2006..
doi:10.1109/TCOMM.2006.873978        Google Scholar

9. Forenza, , A., R. W. Heath, and Jr., "Optimization methodology for designing 2-CPAs exploiting pattern diversity in clustered MIMO channels," IEEE Transactions on Communications, Vol. 56, 1748-1759, Oct. 2008.
doi:10.1109/TCOMM.2008.060582        Google Scholar

10. Bae, S., Y.-K. Hong, J.-J. Lee, J.-H. Park, J. Jalli, G. Abo, H. M. Kwon, and C. K. K. Jayasooriya, "Miniature and higher-order mode ferrite MIMO ring patch antenna for mobile communication system," Progress In Electromagnetics Research B, Vol. 25, 53-74, 2010.
doi:10.2528/PIERB10071910        Google Scholar

11. Piazza, , D., P. Mookiah, M. D'Amico, and K. R. Dandekar, "Pattern reconfigurable circular patch antenna for MIMO communications," Proceedings of RILEM Conference, 2008.        Google Scholar

12. Piazza, D., M. D'Amico, and K. R. Dandekar, "MIMO communication system with reconfigurable circular patch antennas," IEEE Antennas and Propagation Society International Symposium (APSURSI), 1-4, Jul. 2008.        Google Scholar

13. Jayasooriya, , C., H. Kwon, S. Bae, and Y.-K. Hong, "Miniaturized multimode circular patch antennas for MIMO communications," IEEE 70th Vehicular Technology Conference Fall (VTC 2009-Fall), 1-5, Sep. 2009.
doi:10.1109/VETECF.2009.5379071        Google Scholar

14. Jayasooriya, , C. K., H. M. Kwon, S. Bae, and Y.-K. Hong, "Miniaturized circular antennas for MIMO communication systems --- Pattern diversity," 2010 International ITG Workshop on Smart Antennas (WSA) , 331-334, Feb. 2010.
doi:10.1109/WSA.2010.5456422        Google Scholar

15. Jayasooriya, , C. K. K., H. M. Kwon, S. Bae, and Y.-K. Hong, "Miniaturized single circular and single ring patch antenna for MIMO communications exploiting pattern diversity," IEEE International Conference on Communications (ICC),, 1-5, May 2010.        Google Scholar

16. Rajo-Iglesias, , E., O. Quevedo-Teruel, M. L. Pablo-Gonzalez, and M. Sanchez-Fernandez, "A compact dual mode microstrip patch antenna for MIMO applications," Proceedings of IEEE Antennas and Propagation Society International Symposium,, 3651-3654, Jul. 2006.
doi:10.1109/APS.2006.1711412        Google Scholar

17. Balanis, , C. A., Antenna Theory Analysis and Design, 3rd Ed., ohn Wiley & Sons, Inc., , 2005.

18. Yang, , C., Y. Yao, and X. Chen, "Novel compact multiband MIMO antenna for mobile terminal," International Journal of Antennas and Propagation, Vol. 2012, 9, 2012.        Google Scholar

19. Ssorin, , V., A. Artemenko, A. Sevastyanov, and R. Maslennikov, "Compact bandwidth-optimized two element MIMO antenna system for 2.5--2.7 GHz band," Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), 319-323, Apr. 2011.        Google Scholar

20. Dioum, , I., A. Diallo, C. Luxey, and S. Farsi, "Dual-band monopole MIMO antennas for LTE mobile phones," ICECom, 2010 Conference Proceedings, 1-4, Sep. 2010.        Google Scholar

21. Li, , W.-Y. and W.-J. Chen, "Concurrent 2-port/3-port MIMO antenna system for UMTS/LTE2500 operation in the mobile phone," IEEE Antennas and Propagation Society International Symposium (APSURSI),, 1918-1921, Jul. 2011.        Google Scholar

22. Kuonanoja, , R., "Low correlation handset antenna conguration for LTE MIMO applications," IEEE Antennas and Propagation Society International Symposium (APSURSI), 1-4, Jul. 2010.        Google Scholar

23. Lee, , J., Y.-K. Hong, S. Bae, G. Abo, W.-M. Seong, and G.-H. Kim, "Miniature long-term evolution (LTE) MIMO ferrite antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 603-606, 2011.
doi:10.1109/LAWP.2011.2159468        Google Scholar

24. Bhatti, , R., S. Yi, and S.-O. Park, "Compact antenna array with port decoupling for LTE-standardized mobile phones," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1430-1433, 2009.
doi:10.1109/LAWP.2010.2040677        Google Scholar

25. Sato, , H., T. Hayashi, Y. Koyanagi, and H. Morishita , " Small array antenna for 2 2 MIMO terminal using folded loop antenna," First European Conference on Antennas and Propagation (EuCAP 2006) , 1-5, Nov. 2006.        Google Scholar

26. Sharawi, , M., Y. Faouri, and S. Iqbal, "Design and fabrication of a dual electrically small MIMO antenna system for 4G terminals," 2011 German Microwave Conference (GeMIC), 1-4, Mar. 2011.        Google Scholar

27. Blanch, , S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electronics Letters,, Vol. 3, No. 9, 705-707, May 2003.
doi:10.1049/el:20030495        Google Scholar

28. Pedersen, , K. I., P. E. Mogensen, and B. H. Fleury, "Spatial channel characteristics in outdoor environments and their impact on BS antenna system performance," Proceedings of 48th IEEE Vehicular Technology Conference, 719-723, 1998.        Google Scholar

29. Soma, , P., D. Baum, V. Erceg, R. Krishnamoorthy, and A. Paulraj, "Analysis and modeling of multiple-input multiple output (MIMO) radio channel based on outdoor measurements conducted at 2.5 GHz for fixed BWA applications," IEEE International Conference on Communications (ICC),, Vol. 1, 272-276, 2002.        Google Scholar

30. Lee, , J.-H. and C.-C. Cheng, "Spatial correlation of multiple antenna arrays in wireless communication systems," Progress In Electromagnetics Research, Vol. 132, 347-368, 2012.        Google Scholar

31. Correira, , L. M., , Wireless Flexible Personalized Communications, John Wiley & Sons, Inc., , 2001.

32. Alrabadi, , O. N., C. B. Papadias, A. Kalis, N. Marchetti, and R. Rasad, "Spatial multiplexing via antenna switching," IEEE Communication Letters, Vol. 13, 59413-596, 2009.        Google Scholar

33. Pozar, , D. M., , Microwave Engineering , 3rd Ed., John Wiley & Sons, Inc., 2005.

34. Alamouti, , S. M., "A simple transmit diversity technique for wireless communications," IEEE Journal on Selected Areas in Communications , Vol. 16, No. 8, 1451-1458, Oct. 1998.
doi:10.1109/49.730453        Google Scholar