Vol. 53
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-07-23
Efficient Strip-Mode SAR Raw Data Simulator of Extended Scenes Included Moving Targets
By
Progress In Electromagnetics Research B, Vol. 53, 187-203, 2013
Abstract
An accurate and efficient SAR raw data generator is of considerable value for testing system parameters and the imaging algorithms. However, most of the existing simulators concentrate on the raw signal simulation of the static extended scenes and targets. Actually the raw signal simulator of the moving targets is highly desired to quantitatively support the application of the ground moving targets indication. The raw data simulation can be exactly realized in the time domain but not efficient especially when simulating an extended scene. As for the issues, the analytical expression for the 2-D signal spectrum of moving targets with constant acceleration is derived and a fast raw data simulation method in the 2-D frequency domain based on inverse ω-k algorithm is proposed in this paper, where the inverse STOLT interpolation is applied to simulate the range-azimuth couple. So it is more efficient than the time domain one by making use of Fast Fourier Transform (FFT). Simulation results for a man-made scene and a real SAR scene are provided to demonstrate its validity and effectiveness.
Citation
Liang Yang, Weidong Yu, Yun-Hua Luo, and Shichao Zheng, "Efficient Strip-Mode SAR Raw Data Simulator of Extended Scenes Included Moving Targets," Progress In Electromagnetics Research B, Vol. 53, 187-203, 2013.
doi:10.2528/PIERB13050205
References

1. Lim, S.-H., J.-H. Han, S.-Y. Kim, and N.-H. Myung, "Azimuth beam pattern synthesis for airborne SAR system optimization," Progress In Electromagnetics Research, Vol. 106, 295-309, 2010.
doi:10.2528/PIER10061901

2. Liu, Q., W. Hong, W. X. Tan, Y. Lin, Y. Wang, and Y. Wu, "An improved polar format algorithm with performance analysis for geosynchronous circular SAR 2D imaging ," Progress In Electromagnetics Research, Vol. 119, 155-170, 2011.
doi:10.2528/PIER11060503

3. Wei, X., P. Huang, and Y.-K. Deng, "Multi-channel SPCMB-tops SAR for high-resolution wide-swath imaging," Progress In Electromagnetics Research, Vol. 116, 533-551, 2011.

4. Banasiak, R., R. Wajman, D. Sankowski, and M. Soleimani, "Three-dimensional nonlinear inversion of electrical capacitance-tomography data using a complete sensor model," Progress In Electromagnetics Research, Vol. 100, 219-234, 2010.

5. Park, J.-I. and K.-T. Kim, "A comparative study on ISAR imaging algorithms for radar target identification," Progress In Electromagnetics Research, Vol. 108, 155-175, 2010.

6. Wei, S. J., X. L. Zhang, and J. Shi, "Linear array SAR imaging via compressed sensing," Progress In Electromagnetics Research, Vol. 117, 299-319, 2011.

7. Zhou, W., J.-T. Wang, H. W. Chen, and X. Li, "Signal model and moving target detection based on MIMO synthetic aperture radar," Progress In Electromagnetics Research, Vol. 131, 311-329, 2012.

8. Tian, B., D.-Y. Zhu, and Z.-D. Zhu, "A novel moving target detection approach for dual-channel SAR system," Progress In Electromagnetics Research, Vol. 115, 191-206, 2011.

9. Sjogren, T. K., V. T. Vu, M. I. Pettersson, A. Gustavsson, and L. M. H. Ulander, "Moving target relative speed estimation and refocusing in synthetic aperture radar images," IEEE Trans. on Aerosp. Electron. Syst., Vol. 48, No. 3, 2426-2436, 2012.

10. Lv, G. H., J. F. Wang, and X. Z. Liu, "Ground moving target indication in SAR images by symmetric defocusing," IEEE Geosci. Remote Sens. Lett., Vol. 10, No. 2, 241-245, 2013.

11. Jin, Y.-Q., "Polarimetric scattering modeling and informationretrieval of SAR remote sensing --- A review of FDU work," Progress In Electromagnetics Research, Vol. 104, 333-384, 2010.

12. Buddendick, H. and T. F. Eibert, "Bistatic image formationfrom shooting and bouncing rays simulated current distributions," Progress In Electromagnetics Research, Vol. 119, 1-18, 2011.

13. Chang, Y.-L., C.-Y. Chiang, and K.-S. Chen, "SAR image simulation with application to target recognition," Progress In Electromagnetics Research, Vol. 119, 35-57, 2011.

14. Zhang, M., Y. W. Zhao, H. Chen, and W.-Q. Jiang, "SAR imaging simulation for composite model of ship on dynamic ocean scene," Progress In Electromagnetics Research, Vol. 113, 395-412, 2011.

15. Alessandro, M. and D. V. Francesca, "A time-domain raw signal simulator for interferometric SAR," IEEE Trans. on Geosci. Remote Sens., Vol. 42, No. 9, 1811-1817, 2004.

16. Franceschetti, G., M. Migliaccio, D. Riccio, and G. Schirinzi, "SARAS: A synthetic aperture radar (SAR) raw signal simulator," IEEE Trans. on Geosci. Remote Sens., Vol. 30, No. 1, 110-123, 1992.

17. Wang, Y., Z. M. Zhang, and Y. K. Deng, "Squint spotlight SAR raw signal simulation in the frequency domain using optical principles," IEEE Trans. on Geosci. Remote Sens., Vol. 46, No. 8, 2208-2215, 2008.

18. Qiu, X., D. Hu, L. Zhou, and C. Ding, "A bistatic SAR raw data simulator based on inverse ω-k algorithm," IEEE Trans. on Geosci. Remote Sens., Vol. 48, No. 3, 1540-1547, 2010.

19. Franceschetti, G., R. Guida, A. Iodice, D. Riccio, and G. Ruello, "Efficient simulation of hybrid stripmap/spotlight SAR raw signals from extended scenes," IEEE Trans. on Geosci. Remote Sens., Vol. 42, No. 11, 2385-2396, 2004.

20. Franceschetti, G., A. Iodice, S. Perna, and D. Riccio, "SAR sensor trajectory deviations: Fourier domain formulation and extended scene simulation of raw signal," IEEE Trans. on Geosci. Remote Sens., Vol. 44, No. 9, 2323-2334, Sep. 2006.

21. Khwaja, A. S., L. Ferro-Famil, and E. Pottier, "Efficient SAR raw data generation for anisotropic urban scenes based on inverse processing," IEEE Geosci. Remote Sens. Lett., Vol. 6, No. 4, 757-761, 2009.

22. Vachon, P. W., R. K. Raney, and W. J. Emery, "A simulation for spaceborne SAR imagery of a distributed, moving scene," IEEE Trans. on Geosci Remote Sens., Vol. 27, No. 1, 67-78, 1989.

23. Franceschetti, G., V. Pascazio, and G. Schirinzi, "A SAR raw data simulator of nonstationary scenes," Proc. Int. Geosci. Remote Sens. Symp., 2405-2408, 1990.

24. Rüegg, M., E. Meier, and D. Nüesch, "Constant motion, acceleration, vibration and rotation of objectsin SAR data," Proc. of SPIE in SAR Image Analysis, Modeling and Techniques VII, Vol. 5980, 598005, 2005, doi: 10.1117/12.626529.

25. Dogan, O. and M. Kartal, "Efficient strip-mode SAR raw-data simulation of fixed and moving targets," IEEE Geosci. Remote Sens. Lett., Vol. 8, No. 5, 884-888, 2011.

26. Cumming, I. G. and F. H. Wong, Digital Processing of Synthetic Aperture Radar Data Algorithms and Implementation, Artech House, Norwood, MA, 2005.

27. Sun, B., Y. Zhou, J. Chen, and C. Li, "CA-ECS algorithm for squinted SAR imaging based on constant accleration model," Acta Electron. Sin., Vol. 34, No. 9, 1595-1599, 2006.

28. Kersten, P. R., R. W. Jansen, K. Luc, and T. L. Ainsworth, "Motion analysis in SAR images of unfocused objects using time-frequency methods," IEEE Geosci. Remote Sens. Lett., Vol. 4, No. 4, 527-531, 2007.