1. Li, X., W.-T. Li, X.-W. Shi, J. Yang, and J.-F. Yu, "Modified differential evolution algorithm for pattern synthesis of antenna arrays," Progress In Electromagnetics Research, Vol. 137, 371-388, 2013. Google Scholar
2. Lin, C., A.-Y. Qing, and Q.-Y. Feng, "Synthesis of unequally spaced antenna arrays by using differential evolution," IEEE Transactions on Antennas and Propagation, Vol. 58, 2553-2561, 2010.
doi:10.1109/TAP.2010.2048864 Google Scholar
3. Li, R., L. Xu, X.-W. Shi, N. Zhang, and Z.-Q. Lv, "Improved differential evolution strategy for antenna array pattern synthesis problems," Progress In Electromagnetics Research, Vol. 113, 429-441, 2011. Google Scholar
4. Liu, D., Q.-Y. Feng, W.-B. Wang, and X. Yu, "Synthesis of unequally spaced antenna arrays by using inheritance learning particle swarm optimization," Progress In Electromagnetics Research, Vol. 118, 205-221, 2011.
doi:10.2528/PIER11050502 Google Scholar
5. Liu, Y., , Z.-P. Nie, and Q. H. Liu, "A new method for the synthesis of non-uniform linear arrays with shaped power patterns," Progress In Electromagnetics Research, Vol. 107, 349-363, 2010.
doi:10.2528/PIER10060912 Google Scholar
6. Wang, W.-B., Q.-Y. Feng, and D. Liu, "Application of chaotic particle swarm optimization algorithm to pattern synthesis of antenna arrays," Progress In Electromagnetics Research, Vol. 115, 173-189, 2011. Google Scholar
7. Zeng, T. J. and Q. Feng, "Penalty function solution to pattern synthesis of antenna array by a descent algorithm," Progress In Electromagnetics Research B, Vol. 49, 281-300, 2013. Google Scholar
8. Caorsi, S., et al. "Peak sidelobe level reduction with a hybrid approach based on GAs and difference sets," IEEE Transactions on Antennas and Propagation, Vol. 52, 1116-1121, 2004.
doi:10.1109/TAP.2004.825689 Google Scholar
9. Lizzi, L., G. Oliveri, and A. Massa, "A time-domain approach to the synthesis of UWB antenna systems," Progress In Electromagnetics Research, Vol. 122, 557-575, 2012.
doi:10.2528/PIER11103003 Google Scholar
10. Oliveri, G., "Multibeam antenna arrays with common subarray layouts," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 1190-1193, 2010.
doi:10.1109/LAWP.2010.2100073 Google Scholar
11. Manica, L., et al. "Synthesis of multi-beam sub-arrayed antennas through an excitation matching strategy," IEEE Transactions on Antennas and Propagation, Vol. 59, 482-492, 2011.
doi:10.1109/TAP.2010.2096383 Google Scholar
12. Bregains, J., et al. "Synthesis of multiple-pattern planar antenna arrays with single prefixed or jointly optimized amplitude distributions," Microwave and Optical Technology Letters, Vol. 32, 74-78, 2002.
doi:10.1002/mop.10094 Google Scholar
13. Rocca, P., et al. "Differential evolution as applied to electromagnetics," IEEE Antennas and Propagation Magazine, Vol. 53, 38-49, 2011.
doi:10.1109/MAP.2011.5773566 Google Scholar
14. Shi, Z. and S. Wang, "Nonmonotone adaptive trust region method," European Journal of Operational Research, Vol. 208, 28-36, 2011.
doi:10.1016/j.ejor.2010.09.007 Google Scholar
15. Ahookhosh, M., et al. "A nonmonotone trust-region line search method for large-scale unconstrained optimization," Applied Mathematical Modelling, Vol. 36, 478-487, 2012.
doi:10.1016/j.apm.2011.07.021 Google Scholar
16. Zhang, J., et al. "A nonmonotone adaptive trust region method for unconstrained optimization based on conic model," Applied Mathematics and Computation, Vol. 217, 4265-4273, 2010.
doi:10.1016/j.amc.2010.10.043 Google Scholar
17. Nocedal, J. and Y.-X. Yuan, Combining trust region and line search techniques, Department of Electrical Engineering and Computer Science, Northwestern University, 1992.
18. Davidon, W. C., "Conic approximations and collinear scalings for optimizers," SIAM Journal on Numerical Analysis, Vol. 17, 268-281, 1980.
doi:10.1137/0717023 Google Scholar
19. Di, S. and W. Sun, "A trust region method for conic model to solve unconstraind optimizaions," Optimization Methods and Software, Vol. 6, 237-263, 1996.
doi:10.1080/10556789608805637 Google Scholar
20. Ji, Y., et al. "A new nonmonotone trust-region method of conic model for solving unconstrained optimization," Journal of Computational and Applied Mathematics, Vol. 233, 1746-1754, 2010.
doi:10.1016/j.cam.2009.09.011 Google Scholar
21. Deng, C., et al. "Modified dynamic differential evolution for 0-1 knapsack problems," International Conference on Computational Intelligence and Software Engineering, CiSE 2009, 1-4, 2009.
22. Luebbers, R. and K. Kunz, "Finite difference time domain calculations of antenna mutual coupling," IEEE Transactions on Electromagnetic Compatibility, Vol. 34, 357-359, 1992.
doi:10.1109/15.155855 Google Scholar
23. Ye, Z. and C. Liu, "Non-sensitive adaptive beamforming against mutual coupling," IET Signal Processing, Vol. 3, 1-6, 2009.
doi:10.1049/iet-spr:20070198 Google Scholar
24. Liao, B. and S.-C. Chan, "Adaptive beamforming for uniform linear arrays with unknown mutual coupling," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 464-467, 2012.
doi:10.1109/LAWP.2012.2196017 Google Scholar