1. Lewis, Jr., H. R. and W. B. Riesenfeld, "An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field," J. Math. Phys., Vol. 10, No. 8, 1458-1473, 1969.
doi:10.1063/1.1664991 Google Scholar
2. Choi, J. R., "Nonclassical properties of superpositions of coherent and squeezed states for electromagnetic fields in time-varying media," Quantum Optics and Laser Experiments, 25-48, InTech 2012. Google Scholar
3. Kalluri, D. K., "Electromagnetics of Time Varying Complex Media," CRC Press, 2010. Google Scholar
4. Heald, M. A. and C. B. Wharton, "Plasma Diagnostics with Microwaves," Wiley, 1965. Google Scholar
5. Caldirola, P., "Forze non conservative nella meccanica quantistica," Il Nuovo Cimento, Vol. 18, No. 9, 393-400, 1941.
doi:10.1007/BF02960144 Google Scholar
6. Kanai, E., "On the quantization of the dissipative systems," Prog. Theor. Phys., Vol. 3, No. 4, 440-442, 1950.
doi:10.1143/ptp/3.4.440 Google Scholar
7. Tsallis, C., "What are the numbers that experiments provide?," Quimica Nova, Vol. 17, 468-471, 1994. Google Scholar
8. Ozeren, S. F., "The effect of nonextensivity on the time evolution of the SU(1,1) coherent states driven by a damped harmonic oscillator," Physica A, Vol. 337, No. 1--2, 81-88, 2004.
doi:10.1016/j.physa.2004.01.038 Google Scholar
9. Liu, Z. P., L. N. Guo, and J. L. Du, "Nonextensivity and the q-distribution of a relativistic gas under an external electromagnetic field," Chin. Sci. Bull., Vol. 56, No. 34, 3689-3692, 2011.
doi:10.1007/s11434-011-4750-2 Google Scholar
10. Pedrosa, I. A. and A. Rosas, "Electromagnetic field quantization in time-dependent linear media ," Phys. Rev. Lett., Vol. 103, No. 1, 010402, 2009.
doi:10.1103/PhysRevLett.103.010402 Google Scholar
11. Maamache, M., J.-P. Provost, and G. Vallee, "Unitary equivalence and phase properties of the quantum parametric and generalized harmonic oscillators," Phys. Rev. A, Vol. 59, No. 3, 1777-1780, 1999.
doi:10.1103/PhysRevA.59.1777 Google Scholar
12. Tsallis, C., "Possible generalization of Boltzmann-Gibbs statistics," J. Stat. Phys., Vol. 52, No. 1--2, 479-487, 1988.
doi:10.1007/BF01016429 Google Scholar
13. Albuquerque, E. L. and M. G. Cottam, "Theory of elementary excitations in quasiperiodic structures ," Phys. Rep., Vol. 376, No. 4--5, 225-337, 2003.
doi:10.1016/S0370-1573(02)00559-8 Google Scholar
14. Anastasiadis, A. D. and G. D. Magoulas, "Particle swarms and nonextensive statistics for nonlinear optimisation," The Open Cybernetics and Systemics Journal, Vol. 2, 173-179, 2008.
doi:10.2174/1874110X00802010173 Google Scholar
15. McHarris, Wm. C., "Nonlinearities in quantum mechanics," Braz. J. Phys., Vol. 35, No. 2B, 380-384, 2005.
doi:10.1590/S0103-97332005000300003 Google Scholar
16. Marchiolli, M. A. and S. S. Mizrahi, "Dissipative mass-accreting quantum oscillator," J. Phys. A: Math. Gen., Vol. 30, No. 8, 2619-2635, 1997.
doi:10.1088/0305-4470/30/8/011 Google Scholar
17. Choi, J. R., "The decay properties of a single-photon in linear media," Chin. J. Phys., Vol. 41, No. 3, 257-266, 2003. Google Scholar
18. Fujii, K. and T. Suzuki, "An approximate solution of the Jaynes-Cummings model with dissipation," Int. J. Geom. Methods Mod. Phys., Vol. 8, No. 8, 1799-1814, 2011.
doi:10.1142/S0219887811005944 Google Scholar
19. Fujii, K. and T. Suzuki, "An approximate solution of the Jaynes-Cummings model with dissipation II: Another approach," Int. J. Geom. Methods Mod. Phys., Vol. 9, No. 4, 1250036, 2012.
doi:10.1142/S0219887812500363 Google Scholar
20. Buzek, V., A. Vidiella-Barranco, and P. L. Knight, "Superpositions of coherent states: Squeezing and dissipation," Phys. Rev. A, Vol. 45, No. 9, 6570-6585, 1992.
doi:10.1103/PhysRevA.45.6570 Google Scholar
21. Ji, Y.-H. and M.-S. Lei, "Squeezing e®ects of a mesoscopic dissipative coupled circuit," Int. J. Theor. Phys., Vol. 41, No. 7, 1346-1346, 2002.
doi:10.1023/A:1019659101209 Google Scholar
22. Weiss, U., "Quantum Dissipative Systems," World Scientific, 2008. Google Scholar
23. Garashchuk, S., V. Dixit, B. Gu, and J. Mazzuca, "The Schrodinger equation with friction from the quantum trajectory perspective ," J. Chem. Phys., Vol. 138, No. 5, 054107, 2013.
doi:10.1063/1.4788832 Google Scholar
24. Stannigel, K., P. Rabl, and P. Zoller, "Driven-dissipative preparation of entangled states in cascaded quantum-optical networks," New J. Phys., Vol. 14, No. 6, 063014, 2012.
doi:10.1088/1367-2630/14/6/063014 Google Scholar
25. Choi, J. R., "Quantum unitary transformation approach for the evolution of dark energy," Dark Energy --- Current Advances and Ideas, 117-134, 2009. Google Scholar
26. Choi, J. R., "SU(1,1) Lie algebraic approach for the evolution of the quantum inflationary universe ," Phys. Dark Univ., Vol. 2, No. 1, 41-49, 2013.
doi:10.1016/j.dark.2013.02.002 Google Scholar