Vol. 42
Latest Volume
All Volumes
PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-07-24
Neurocomputational Analysis of Coaxial Fed Stacked Patch Antennas for Satellite and WLAN Applications
By
Progress In Electromagnetics Research C, Vol. 42, 125-135, 2013
Abstract
This paper presents a neural network based technique for the analysis of various stacked patch antennas, those can be applied for satellite and wireless local area network (WLAN) applications. In order to show the diversity of artificial neural network (ANN) modeling technique, two different trained neural networks were developed with different number of antenna geometrical parameters as inputs. These trained networks locate the operational resonance frequencies with their bands for stacked patch antennas (SPA) operating in the X-Ku (8 GHz-18 GHz) bands and WLAN bands (2 GHz-6 GHz). These frequency bands are useful for satellite communication and indoor wireless communication applications respectively. First ANN model takes design (geometrical) parameters of antenna like lower patch dimension, upper patch dimension, and height of air gap, as a input, whereas other NN model includes feed point location also as a input. The validity of the network is tested with the simulations results obtained from the full-wave Method of Moment (MoM) based IE3D and few experimental results obtained in the laboratory.
Citation
Satish Kumar Jain, and Shobha Jain, "Neurocomputational Analysis of Coaxial Fed Stacked Patch Antennas for Satellite and WLAN Applications," Progress In Electromagnetics Research C, Vol. 42, 125-135, 2013.
doi:10.2528/PIERC13061702
References

1. Gupta, R. K. and G. Kumar, "High gain multilayered antenna for wireless application," Microwave and Optical Technology Letter, Vol. 50, 1923-1928, Jul. 2008.
doi:10.1002/mop.23536

2. Croq, F., G. Kossiavas, and A. Papiernik, "Stacked resonators for bandwidth enhancement: A comparision of two feeding techniques," IEE Proc., Vol. 140, 303-308, Aug. 1993.

3. Ju, J. M., G.-T. Jeong, J.-H. Yoon, S.-W. Ko, and K.-S. Kwak, "Design of multiple U-shaped slot microstrip patch antenna for 5-GHz band WLANs," Microwave and Optical Technology Letters, Vol. 43, No. 6, 487-488, Dec. 2004.

4. Fairus, M., M. Yusof, I. P. Pohn, M. Esa, N. A. Murad, Y. Eng, and A. Marandi, "Stacked square fractal antenna with improved bandwidth for wireless local area network access point," International Conference on RF and Microwave, 228-232, Sep. 2006.

5. Thomas, K. G. and M. Sreenivasan, "A simple dual-band microstrip-fed printed antenna for WLAN applications," IET Microw. Antennas Propag., Vol. 3, No. 4, 687-693, 2009.
doi:10.1049/iet-map.2008.0077

6. Mitchell, A., M. Leech, D. M. Kokotoff, and R. Waterhouse, "Search for high-performance probe-fed stacked patches using optimization," IEEE Tran. on Antennas and Prop., Vol. 51, No. 2, 249-255, Feb. 2003.
doi:10.1109/TAP.2003.809070

7. Balanis, C. A., Advanced Engineering Electromagnetic, John Wiley & Sons, New York, 1989.

8. Jain, S. K., S. N. Sinha, and A. Patnaik, "Analysis of coaxial fed dual patch multilayer X/Ku band antenna using artificial neural networks," Proc. of Int. Symp. on Biologically Inspired Computing and Applications (BICA'09), 1111-1114, Bhubaneshawar, India, Dec. 2009, (Doi: 10.1109/NABIC.2009.5393812).

9. Christodoulou, C. and G. Michael, Application of Neural Networks in Electromagnetics, Artech House, London, 2001.

10. Zhang, Q. J. and K. C. Gupta, Neural Networks for RF and Microwave Design, Artech House, London, 2000.

11. Patnaik, A., D. Anagnostous, C. G. Christodoulou, and J. C. Lyke, "Neurocomputational analysis of a multiband reconfigurable planner antenna," IEEE Tran. on Antennas and Prop., Vol. 53, No. 11, 3453-3457, Nov. 2005.
doi:10.1109/TAP.2005.858617

12. Vagni, L. and A. Toscano, "Analysis of microstrip antennas using neural networks," IEEE Tran. on Magnetics, Vol. 33, No. 2, 1414-1419, Mar. 1997.
doi:10.1109/20.582522

13. Somasiri, N. P., X. Chen, and A. A. Rezazadeh, "Neural network modeller for design optimization of multilayer patch antennas," IEE Proc. --- Microw., Antennas Propag., Vol. 151, No. 6, 514-518, Dec. 2004.
doi:10.1049/ip-map:20040862

14. Mishra, R. K. and A. Patnaik, "Neurospectral computation for complex resonant frequency of microstrip resonators," IEEE Microwave and Guided Wave Letters, Vol. 9, No. 9, 351-353, Sep. 1999.
doi:10.1109/75.790471

15. Guney, K. and S. S. Gultekin, "Artificial neural networks for resonant frequency calculation of rectangular microstrip antennas with thin and thick substrates," International Journal of Infrared and Millimeter Waves, Vol. 25, No. 9, 1383-1391, Sep. 2004.
doi:10.1023/B:IJIM.0000045146.70836.ee

16. Haykins, S., Neural Networks --- A Comprehensive Foundation, 2nd Ed., Prentice-Hall, Inc., Boston, 1999.