Vol. 56
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-11-14
Focusing Properties of Ultra Wideband Transient Arrays
By
Progress In Electromagnetics Research B, Vol. 56, 387-407, 2013
Abstract
Some new focusing properties of time-domain ultra wide band (UWB) focusing array antennas are presented. The large current radiator (LCR) is considered as the UWB antenna element. Each LCR is replaced by a set of infinitesimal dipoles modeling both the near field and the far field patterns of the antenna element and the coupling between the elements. Several antenna arrays with different sizes and number of elements are modeled. It is shown that similar to narrow band antennas, the actual maximum field region shifts from the intended focus region towards the antenna aperture.
Citation
Shaya Karimkashi, Ahmed A. Kishk, Darko Kajfez, and Guifu Zhang, "Focusing Properties of Ultra Wideband Transient Arrays," Progress In Electromagnetics Research B, Vol. 56, 387-407, 2013.
doi:10.2528/PIERB13080609
References

1. Sherman, J. W., "Properties of focused aperture in the Fresnel region," IRE Trans. on Antennas Propagat., Vol. 10, No. 4, 399-408, 1962.
doi:10.1109/TAP.1962.1137900        Google Scholar

2. Hanson, R. C., "Focal region characteristics of focused array antennas," IEEE Trans. on Antennas and Propagat., Vol. 33, No. 6, 1328-1337, 1985.
doi:10.1109/TAP.1985.1143539        Google Scholar

3. Graham, W. J., "Analysis and synthesis of axial field patterns of focused apertures," IEEE Trans. on Antennas and Propagat., Vol. 31, No. 4, 665-668, 1983.
doi:10.1109/TAP.1983.1143106        Google Scholar

4. Karimkashi, S. and A new Fresnel zone antenna, "A new Fresnel zone antenna with beam focused in the Fresnel region," URSI National Radio Science Meeting, 2008.        Google Scholar

5. Karimkashi, S. and A. A. Kishk, "Focused microstrip array antenna using a Dolph-Chebyshev near-field design," IEEE Trans. on Antennas and Propagat., Vol. 57, No. 12, 3813-3820, Dec. 2009.
doi:10.1109/TAP.2009.2033435        Google Scholar

6. Karimkashi, S. and A. A. Kishk, "Focusing properties of Fresnel zone plate lens antennas in the near-field region," IEEE Trans. on Antennas and Propagat., Vol. 59, No. 5, 1481-1487, May 2011.
doi:10.1109/TAP.2011.2123069        Google Scholar

7. Karimkashi, S. and J. Rashed-Mohassel, "Blockage minimization in symmetric dual reflector antennas for different edge taper values," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 4, 505-514, 2006.
doi:10.1163/156939306776117036        Google Scholar

8. Sirenko, K., V. Pazynin, Y. K. Sirenko, and H. Bagci, "Compression and radiation of high-power short RF Pulses. II. A novel antenna array design with combined compressor/radiator elements," Progress In Electromagnetics Research, Vol. 116, 271-296, 2011.        Google Scholar

9. Hackett, D. R., C. D. Taylor, D. Mclemore, H. Dogliani, W. A. Walton, and A. J. Leyendecker, "A transient array to increase the peak power delivered to a localized region in space: Part I --- Theory and modeling," IEEE Trans. on Antennas and Propagat., Vol. 50, No. 12, 1743-1750, Dec. 2002.
doi:10.1109/TAP.2003.808776        Google Scholar

10. Jacobsen, S., "Reduction of hot spots in hyperthermia by means of broadband energy transmission," Electron. Lett., Vol. 34, No. 20, 1901-1902, Oct. 1998.
doi:10.1049/el:19981363        Google Scholar

11. Converse, M. C., E. J. Bond, S. C. Hagness, and B. D. Van Veen, "Ultrawide-band microwave space-time beamforming for hyper-thermia treatment of breast cancer: A computational feasibility study," IEEE Trans. on Microw. Theory and Tech., Vol. 52, No. 8, 1876-1889, Aug. 2004.
doi:10.1109/TMTT.2004.832012        Google Scholar

12. Converse, M., E. J. Bond, B. D. Van Veen, and S. Hagness, "A computational study of ultra-wideband versus narrowband microwave hyperthermia for breast cancer treatment," IEEE Trans. on Microw. Theory and Tech., Vol. 54, No. 5, 2169-2180, May 2006.
doi:10.1109/TMTT.2006.872790        Google Scholar

13. Baum, C. E., et al. "Transient arrays," Ultra-wideband, Short-pulse Electromagnetics 3, 129-138, 1997.
doi:10.1007/978-1-4757-6896-1_17        Google Scholar

14. Hussain, M. G. M. "Characteristics of ultra-wideband electromagnetic missiles generated by focused two-dimensional array," Progress In Electromagnetics Research, Vol. 49, 143-159, 2004.
doi:10.2528/PIER04030301        Google Scholar

15. Schwartz, J. L. and B. D. Steinberg, "Properties of ultrawideband arrays," Ultra-wideband, Short-pulse Electromagnetics 3, 139-145, 1997.
doi:10.1007/978-1-4757-6896-1_18        Google Scholar

16. Durney, C. H. and M. F. Iskandar, "Antennas for medical applications," Antenna Hand Book: Theory, Applications, and Design , Vol. 24, 1988.        Google Scholar

17. Baum, C. E., "Focused Aperture Antennas, Air Force Research Laboratory,", 1987.        Google Scholar

18. Kang, Y. W. and Optimization of pulse radiation, "Optimization of pulse radiation from dipole arrays for maximum energy in a specified time interval," IEEE Trans. on Antennas and Propagat., Vol. 34, 1383-1390, Dec. 1986.
doi:10.1109/TAP.1986.1143772        Google Scholar

19. Taylor, J. D., Introduction to Ultra-wideband Radar Systems, CRC, 1995.

20. Hussain, M. G. M., "Ultra-wideband impulse radar --- An overview of the principles," IEEE Aerosp. Electron. Syst. Mag., Vol. 31, No. 9, 9-14, Sep. 1998.
doi:10.1109/62.715515        Google Scholar

21. Di Benedetto, M., et al. UWB Communication Systems: A Comprehensive Overview, 2006.
doi:10.1155/9789775945105

22. Gresham, I., et al. "Ultra-wideband radar sensors for short-range vehicular applications," IEEE Trans. on Microw. Theory and Tech., Vol. 52, No. 9, 2105-2122, 2004.
doi:10.1109/TMTT.2004.834185        Google Scholar

23. Hussain, M. G. M., "Antenna patterns of nonsinusoidal waves with the time variation of a Gaussian pulse: Parts I and II," IEEE Trans. on Electromag. Compat., Vol. 3, No. 4, 504-522, Nov. 1988.
doi:10.1109/15.8764        Google Scholar

24. Ziolkowski, R. W., "Properties of electromagnetic beams generated by ultra-wide bandwidth pulse-driven arrays," IEEE Trans. on Antennas and Propagat., Vol. 40, No. 8, 888-905, Aug. 1992.
doi:10.1109/8.163426        Google Scholar

25. Hussain, M. G. M., "Principles of space-time array processing for ultrawide-band impulse radar and radio communications," IEEE Trans. on Veh. Technol., Vol. 51, No. 3, 393-403, May 2002.
doi:10.1109/TVT.2002.1002490        Google Scholar

26. Shlivinski, A. and E. Heyman, "A unified kinematic theory of transient arrays," Ultra-wideband, Short-pulse Electromagnetics, 2002.        Google Scholar

27. Shlivinski, A., "Kinematic properties of short-pulsed sparse transmitting arrays," Progress In Electromagnetics Research, Vol. 115, 11-33, 2011.        Google Scholar

28. Hussain, A. S. Al-Zayed and A. S. Al-Zayed, "Aperture-sparsity analysis of ultrawideband two-dimensional focused array," IEEE Trans. on Antennas and Propagat., Vol. 56, 1908-1918, Jul. 2008.
doi:10.1109/TAP.2008.924699        Google Scholar

29. Harmuth, N. J. Mohamed and N. J. Mohamed, "Large-current radiators," IEE Proceedings --- H, Vol. 139, No. 4, 358-362, Aug. 1992.        Google Scholar

30. Pochanin, G., V. Kholod, and S. A. Masalov, "Large current radiator with S-diode switch," IEEE Trans. on Electromagn. Compat., Vol. 43, No. 1, 94-100, 2001.
doi:10.1109/15.917950        Google Scholar

31. Pochanin, G. and S. A. Masalov, "Use of the coupling between elements of the vertical antenna array of LCRs to gain radiation effciency for UWB pulses," IEEE Trans. on Antennas and Propagat., Vol. 55, No. 6, 1754-1759, Jun. 2007.
doi:10.1109/TAP.2007.898592        Google Scholar

32. Hussain, M. G. M., Antenna Pattern of Large-current Radiator and Closed-loop Sensor, 1992.

33. Lukin, K. A., G. Pochanin, and S. A. Masalov, "Large current radiator with avalanche transistor Switch," IEEE Trans. on Electromagn. Compat., Vol. 39, No. 2, 156-159, May 1997.
doi:10.1109/15.584938        Google Scholar

34. Wehr, M. and G. Monich, "Detection of radiation leaks by spherically scanned field data," Proc. 10th Int. Zurich Symp. Technol. Exhb. EMC, 1993.        Google Scholar

35. Wehr, M., A. Podubrin, and G. Monich, "Automated search for models by evolution strategy to characterize radiators," Proc. 11th Int. Zurich Symp. Technol. Exhb. EMC, 1995.        Google Scholar

36. McNay, D., E. Michielssen, R. L. Rogers, S. A. Taylor, M. Akhtari, and W. W. Sutherling, "Multiple source localization using genetic algorithms," J. Neurosci. Methods, Vol. 64, 163-172, Feb. 1996.
doi:10.1016/0165-0270(95)00122-0        Google Scholar

37. Regue, J.-R., M. Ribo, J.-M. Garrell, and A. Martin, "A genetic algorithm method for source identification and far-field radiated emissions predicted from near-field measurements for PCB characterization," IEEE Trans. on Electromagn. Compat. , Vol. 43, 520-530, Nov. 2001.
doi:10.1109/15.974631        Google Scholar

38. Sijher, T. S. and A. A. Kishk, "Antenna modeling by infinitesimal dipoles using genetic algorithms," Progress In Electromagnetics Research, Vol. 52, 225-254, 2005.
doi:10.2528/PIER04081801        Google Scholar

39. Mikki, S. M. and A. A. Kishk, "Theory and applications of infinitesimal dipole models for computational electromagnetics," IEEE Trans. on Antennas and Propagat., Vol. 55, 1325-1337, 2007.
doi:10.1109/TAP.2007.895625        Google Scholar

40. Wu, X. H., A. A. Kishk, and A. W. Glisson, "A transmission line method to compute the far-field radiation of arbitrary Hertzian dipoles in a multilayer structure embedded with PEC strip interfaces," IEEE Trans. on Antennas and Propagat., Vol. 55, 3191-3198, Nov. 2007.
doi:10.1109/TAP.2007.908836        Google Scholar

41. Wu, X. H., A. A. Kishk, and A. W. Glisson, "A transmission line method to compute the far-field radiation of arbitrarily directed Hertzian dipoles in a multilayer dielectric structure: Theory and applications," IEEE Trans. on Antennas and Propagat., Vol. 54, 2731-2741, Oct. 2006.
doi:10.1109/TAP.2006.882164        Google Scholar

42. Wu, X. H., A. A. Kishk, and A. W. Glisson, "Modeling of wide band antennas by frequency-dependent Hertzian dipoles," IEEE Trans. on Antennas and Propagat., Vol. 56, 2481-2489, Aug. 2008.
doi:10.1109/TAP.2008.927546        Google Scholar

43. Karimkashi, S., A. A. Kishk, and D. Kajfez, "Antenna array optimization using dipole models for MIMO applications," IEEE Trans. on Antennas and Propagat., Vol. 59, No. 8, 3112-3116, 2011.
doi:10.1109/TAP.2011.2158976        Google Scholar

44. Karimkashi, S., A. A. Kishk, and G. Zhang, "Modelling of aperiodic array antennas using infinitesimal dipoles," IET Microwaves, Antennas Propagat., Vol. 6, No. 7, 761-767, 2012.
doi:10.1049/iet-map.2011.0402        Google Scholar

45. Richmond, J., "A reaction theorem and its application to antenna impedance calculations," IRE Trans. on Antennas Propag., Vol. 9, No. 6, 515-520, 1961.
doi:10.1109/TAP.1961.1145068        Google Scholar

46. Harmuth, H. F., Sequence Theory, Foundations and Applications, Academic, 1977.

47. Harmuth, H. F., Nonsinusoidal Waves for Radar and Radio Communication, Academic, 1981.

48. Harmuth, H. F., Antennas and Waveguides for Nonsinusoidal Waves, Academic, 1984.