Vol. 43
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-09-14
A Novel Design of Low Profile Highly Directive Antenna with Partially Reflecting Surface Superstrate
By
Progress In Electromagnetics Research Letters, Vol. 43, 55-63, 2013
Abstract
This paper presents a new design of high-gain low-profile resonant cavity antenna. A novel partially reflecting surface (PRS) is adopted as the superstrate with the characteristics of high-reflection magnitude and low-reflection phase that allows the reduction of cavity height to about λ/8 and the enhancement of the gain by 10.73 dB. Several significant parameters that characterize the PRS superstrate are investigated based on the unit cell simulation. The measured results show that this method is effective, and this structure can provide a high-gain at the operating frequency. The measured results agree reasonably well with the simulated ones.
Citation
Xiao-Jing Qi, Yong-Chang Jiao, Gang Zhao, and Kai-Lun Liang, "A Novel Design of Low Profile Highly Directive Antenna with Partially Reflecting Surface Superstrate," Progress In Electromagnetics Research Letters, Vol. 43, 55-63, 2013.
doi:10.2528/PIERL13080904
References

1. Attia, H., O. Siddiqui, L. Yousefi, and O. M. Ramahi, "Metamaterial for gain enhancement of printed antennas: Theory, measurements and optimization," Saudi International Electronics, Communications and Photonics Conference (SIECPC), 1-6, Apr. 2011.

2. Enoch, S., G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Physical Review Letters, Vol. 89, No. 21, 213902-1-213902-4, 2002.

3. Lagarkov, A. N., V. N. Kisel, and V. N. Semenenko, "Wide-angle absorption by the use of a metamaterial plate," Progress In Electromagnetics Research Letters, Vol. 1, 35-44, 2008.

4. Zhou, L., H. Li, Y. Qin, Z. Wei, and C. T. Chan, "Directive emissions from subwavelength metamaterial-based cavities," Antenna Technology: Small Antennas and Novel Metamaterials, Vol. 86, 101101-1-101101-3, 2005.

5. Sievenpiper, D., R. Broas, and E. Yablonovitch, "Antennas on high-impedance ground planes," IEEE MTT-S Int. Microwave Symp. Digest, Vol. 3, 1245-1248, 1999.

6. Ge, Y., K. P. Esselle, and Y. Hao, "Design of low-profile high-gain EBG resonator antennas using a genetic algorithm," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 480-483, 2007.

7. Feresidis, A. P., G. Goussetis, S. Wang, and J. C. Vardaxoglou, "Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 209-215, 2005.

8. Boubakri, A. and J. Bel Hadj Tahar, "Steerable and compact antenna using a cavity-based metamaterial," IEEE Mediterranean Microwave Symposium (MMS), 233-235, Nov. 2011.

9. Han, K., J. Fu, Q. Wu, and J. Hua, "The design and simulation of a metamaterial and subwavelength cavity-based antenna," Cross Strait Quad-regional Radio Science and Wireless Technology Conference (CSQRWC), Vol. 1, 545-548, Jul. 2011.

10. Wang, S., A. P. Feresidis, G. Goussetis, and J. C. Vardaxoglou, "Low-profile resonant cavity antenna with Artificial magnetic conductor ground plane," Antennas and Propagation Society International Symposium, Vol. 4, 335-338, 2005.

11. Sohn, J. R., K. Y. Kim, H. S. Tae, and H. J. Lee, "Comparative study on various artificial magnetic conductors for low-profile antenna," Progress In Electromagnetics Research,, Vol. 61, 27-37, 2006.

12. Abbasi, N. A. and R. J. Langley, "Multiband-integrated antenna/artificial magnetic conductor," IET Microwaves, Antennas and Propagation, Vol. 5, No. 6, 711-717, 2011.

13. Dewan, R., S. K. B. A. Rahim, S. F. Ausordin, and T. Purnamirza, "The improvement of array antenna performance with the implementation of an artificial magnetic conductor (AMC) ground plane and in-phase superstrate," Progress In Electromagnetics Research, Vol. 140, 147-167, 2013.

14. Kelly, J. R., T. Kokkinos, and A. P. Feresidis, "Analysis and design of sub-wavelength resonant cavity type 2-D leaky-wave antennas," IEEE Trans. Antennas Propag., Vol. 56, No. 9, 2817-2825, Sep. 2008.

15. Zhao, G., Y. C. Jiao, F. Zhang, and F. S. Zhang, "Design of high-gain low-profile resonant cavity antenna using metamaterial superstrate," Microwave and Optical Technology Letters, Vol. 52, No. 8, 1855-1858, 2010.

16. Yang, F. H. and W. Tang, "A novel low-profile high-gain antenna based on artificial magnetic conductor for LTE applications," 2012 10th IEEE International Symposium on Antennas, Propagation and EM Theory (ISAPE), 171-174, 2012.

17. Ourir, A., A. de Lustrac, and J. M. Lourtioz, "All-metamaterial-based sub-wavelength cavities (λ/60) for ultrathin directive antennas," Appl. Phys. Lett., Vol. 88, 084103-1-084103-3, 2006.

18. Lima, A. C. C. and E. A. Parker, "Fabry-Perot approach to the design of double layer FSS," IEE Proceedings of Microwave, Antennas and Propagation, Vol. 143, No. 2, 157-162, Apr. 1996.