1. Jackson, J. D., "Classical Electrodynamics," Wiley, 1975. Google Scholar
2. Landau, L. D. and E. M. Lifshitz, "Electrodynamics of Continuous Media,", 1984. Google Scholar
3. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, 824-830, 2003.
doi:10.1038/nature01937 Google Scholar
4. Lee, B., I.-M. Lee, S. Kim, D.-H. Oh, and L. Hesselink, "Review on subwavelength confinement of light with plasmonics," J. Mod. Opt., Vol. 57, No. 16, 1479-1497, 2010.
doi:10.1080/09500340.2010.506985 Google Scholar
5. Ahn, W., S. V. Boriskina, Y. Hong, and B. M. Reinhard, "Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices," Nano Lett., Vol. 12, 219-227, 2012.
doi:10.1021/nl203365y Google Scholar
6. Ruting, F., A. I. Fernandez-Domnguez, L. Martin-Moreno, and F. J. Garcia-Vidal, "Subwavelength chiral surface plasmons that carry tuneable orbital angular momentum," Phys. Rev. B, Vol. 86, 075437, 2012.
doi:10.1103/PhysRevB.86.075437 Google Scholar
7. Tang, Y. and A. E. Cohen, "Optical chirality and its interaction with matter," Phys. Rev. Lett., Vol. 104, 163901, 2010.
doi:10.1103/PhysRevLett.104.163901 Google Scholar
8. Hendry, E., T. Carpy, J. Johnston, M. PoplandR. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, "Ultrasensitive detection and characterization of biomolecules using superchiral fields," Nat. Nanotechnol., Vol. 5, 783-787, 2010.
doi:10.1038/nnano.2010.209 Google Scholar
9. Hentschel, M., M. Schaferling, T. Weiss, N. Liu, and H. Giessen, "Three-dimensional chiral plasmonic oligomers," Nano Lett., Vol. 12, 2542-2547, 2012.
doi:10.1021/nl300769x Google Scholar
10. Gorodetski, Y., A. Drezet, C. Genet, and T. W. Ebbesen, "Generating far-field orbital angular momenta from near-field optical chirality," Phys. Rev. Lett., Vol. 110, 203906, 2013.
doi:10.1103/PhysRevLett.110.203906 Google Scholar
11. Miroshnichenko, A. E., S. Plach, and Y. S. Kivshar, "Fano resonances in nanoscale structures," Rev. Mod. Phys., Vol. 82, 2257-2298, 2010.
doi:10.1103/RevModPhys.82.2257 Google Scholar
12. Luk'yanchuk, B., N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, "The Fano resonance in plasmonic nanostructures and metamaterials," Nature Mater., Vol. 9, 707-715, 2010.
doi:10.1038/nmat2810 Google Scholar
13. Gurevich, A. and G. Melkov, Magnetic Oscillations and Waves, CRC Press, 1996.
14. Kamenetskii, E. O., "Energy eigenstates of magnetostatic waves and oscillations," Phys. Rev. E, Vol. 63, 066612, 2001.
doi:10.1103/PhysRevE.63.066612 Google Scholar
15. Kamenetskii, E. O., M. Sigalov, and R. Shavit, "Quantum confinement of magnetic-dipolar oscillations in ferrite discs," J. Phys.: Condens. Matter, Vol. 17, 2211-2231, 2005.
doi:10.1088/0953-8984/17/13/018 Google Scholar
16. Kamenetskii, E. O., "Vortices and chirality of magnetostatic modes in quasi-2D ferrite disc particles," J. Phys. A: Math. Theor., Vol. 40, 6539-6559, 2007.
doi:10.1088/1751-8113/40/24/017 Google Scholar
17. Kamenetskii, E. O., "Helical-mode magnetostatic resonances in small ferrite particles and singular metamaterials," J. Phys.: Condens. Matter, Vol. 22, 486005, 2010.
doi:10.1088/0953-8984/22/48/486005 Google Scholar
18. Kamenetskii, E. O., M. Sigalov, and R. Shavit, "Manipulating microwaves with magnetic-dipolar-mode vortices," Phys. Rev. A, Vol. 81, 053823, 2010.
doi:10.1103/PhysRevA.81.053823 Google Scholar
19. Kamenetskii, E. O., R. Joffe, and R. Shavit, "Coupled states of electromagnetic fields with magnetic-dipolar-mode vortices: MDM-vortex polaritons," Phys. Rev. A, Vol. 84, 023836, 2011.
doi:10.1103/PhysRevA.84.023836 Google Scholar
20. Kamentskii, E. O., "Microwave magnetoelectric fields," arXiv:1111.4359, 2011. Google Scholar
21. Kamenetskii, E. O., R. Joffe, and R. Shavit, "Microwave magnetoelectric fields and their role in the matter-field interaction," Phys. Rev. E, Vol. 87, 023201, 2013.
doi:10.1103/PhysRevE.87.023201 Google Scholar
22. Berezin, M., E. O. Kamenetskii, and R. Shavit, "Topological phase effects and path-dependent interference in microwave structures with magnetic-dipolar-mode ferrite particles," J. Opt., Vol. 14, 125602, 2012.
doi:10.1088/2040-8978/14/12/125602 Google Scholar
23. Kamenetskii, E. O., G. Vaisman, and R. Shavit, "Fano resonances of microwave structures with embedded magneto-dipolar quantum dots," arXiv:1309.2792, 2013. Google Scholar
24. McDonald, K. T., "An electrostatic wave," arXiv:physics/0312025, 2003. Google Scholar
25. McDonald, K. T., "Magnetostatic spin waves," arXiv:physics/0312026, 2003. Google Scholar
26. Sondergaard, T. and S. Bozhevolnyi, "Slow-plasmon resonant nanostructures: Scattering and field enhancements," Phys. Rev. B, Vol. 75, 073402, 2007.
doi:10.1103/PhysRevB.75.073402 Google Scholar
27. Pelton, M., J. Aizpurua, and G. Bryant, "Metal-nanoparticle plasmonics," Laser & Photon. Rev., Vol. 2, 136-159, 2008.
doi:10.1002/lpor.200810003 Google Scholar
28. Stockman, M. I., S. V. Faleev, and D. J. Bergman, "Localization versus delocalization of surface plasmons in nanosystems: Can one state have both characteristics?," Phys. Rev. Lett., Vol. 87, 167401, 2001.
doi:10.1103/PhysRevLett.87.167401 Google Scholar
29. Li, K., M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an e±cient nanolens," Phys. Rev. Lett., Vol. 91, 227402, 2003.
doi:10.1103/PhysRevLett.91.227402 Google Scholar
30. Bergman, D. J. and D. Stroud, "Theory of resonances in the electromagnetic scattering by macroscopic bodies," Phys. Rev. B, Vol. 22, 3527-3539, 1980.
doi:10.1103/PhysRevB.22.3527 Google Scholar
31. Mayergoyz, I. D., D. R. Fredkin, and Z. Zhang, "Electrostatic (plasmon) resonances in nanoparticles," Phys. Rev. B, Vol. 72, 155412, 2005.
doi:10.1103/PhysRevB.72.155412 Google Scholar
32. Brongersma, M. L., J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B, Vol. 62, R16356-R16359, 2000.
doi:10.1103/PhysRevB.62.R16356 Google Scholar
33. Maier, S. M., P. G. Kik, and H. A. Atwater, "Optical pulse propagation in metal nanoparticle chain waveguides," Phys. Rev. B, Vol. 67, 205402, 2003.
doi:10.1103/PhysRevB.67.205402 Google Scholar
34. Davis, T. J., K. C. Vernon, and D. E. Gomez, "Effect of retardation on localized surface plasmon resonances in a metallic nanorod," Opt. Express, Vol. 17, 23655-23663, 2009.
doi:10.1364/OE.17.023655 Google Scholar
35. Wang, Z. B., B. S. Luk'yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, "Energy flow around a small particle investigated by classical Mie theory ," Phys. Rev. B, Vol. 70, 035418, 2004.
doi:10.1103/PhysRevB.70.035418 Google Scholar
36. Bashevoy, M. V., V. A. Fedotov, and N. I. Zheludev, "Optical whirlpool on an absorbing metallic nanoparticle," Opt. Express, Vol. 13, 8372-8379, 2005.
doi:10.1364/OPEX.13.008372 Google Scholar
37. Tribelsky, M. I. and B. S. Luk'ynchuk, "Anomalous light scattering by small particles," Phys. Rev. Lett., Vol. 97, 263902, 2006.
doi:10.1103/PhysRevLett.97.263902 Google Scholar
38. Walker, L. R., "Magnetostatic modes in ferromagnetic resonance," Phys. Rev., Vol. 105, 390-399, 1957.
doi:10.1103/PhysRev.105.390 Google Scholar
39. Dillon, Jr., J. F., "Magnetostatic modes in disks and rods," J. Appl. Phys., Vol. 31, 1605-1614, 1960.
doi:10.1063/1.1735901 Google Scholar
40. Yukawa, T. and K. Abe, "FMR spectrum of magnetostatic waves in a normally magnetized YIG disk," J. Appl. Phys., Vol. 45, 3146-3153, 1974.
doi:10.1063/1.1663739 Google Scholar
41. Kamenetskii, E. O., A. K. Saha, and I. Awai, "Interaction of magnetic-dipolar modes with microwave-cavity electromagnetic fields," Phys. Lett. A, Vol. 332, 303-309, 2004.
doi:10.1016/j.physleta.2004.09.067 Google Scholar
42. Sigalov, M., E. O. Kamenetskii, and R. Shavit, "Eigen electric moments and magnetic-dipolar vortices in quasi-2D ferrite disks," Appl. Phys. B, Vol. 93, 339-343, 2008.
doi:10.1007/s00340-008-3168-2 Google Scholar
43. Sigalov, M., E. O. Kamenetskii, and R. Shavit, "Electric self-inductance of quasi-two-dimensional magnetic-dipolar-mode ferrite disks," J. Appl. Phys., Vol. 104, 053901, 2008.
doi:10.1063/1.2973676 Google Scholar
44. Kamenetskii, E. O., R. Shavit, and M. Sigalov, "Quantum wells based on magnetic-dipolar-mode oscillations in disk ferromagnetic particles," Europhys. Lett., Vol. 64, 730-736, 2003.
doi:10.1209/epl/i2003-00620-2 Google Scholar
45. Pozar, D. M., Microwave Engineering, 3rd Ed., Wiley , 2004.
46. Sigalov, M. and Magnetic-dipolar, "Magnetic-dipolar and electromagnetic vortices in quasi-2D ferrite disks," J. Phys.: Condens. Matter, Vol. 21, 016003, 2009.
doi:10.1088/0953-8984/21/1/016003 Google Scholar
47. Kamenetskii, E. O., M. Sigalov, and R. Shavit, "Tellegen particles and magnetoelectric metamaterials," J. Appl. Phys., Vol. 105, 013537, 2009.
doi:10.1063/1.3054298 Google Scholar
48. Anlage, S. M., D. E. Steinhauer, B. J. Feenstra, C. P. Vlahacos, and F. C.Wellstood, "Near-field microwave microscopy of material properties," arXiv: cond-mat/0001075, 2000. Google Scholar
49. Rosner, B. T. and D. W. van der Weide, "High-frequency near-field microscopy," Rev. Sci. Instrum., Vol. 73, 2505-2525, 2002.
doi:10.1063/1.1482150 Google Scholar
50. Joffe, R., E. O. Kamenetskii, and R. Shavit, "Novel microwave near-field sensors for material characterization, biology and nanotechnology," J. Appl. Phys., Vol. 113, 063912, 2013.
doi:10.1063/1.4791713 Google Scholar
51. Carney, P. S., B. Deutch, A. A. Govyadinov, and R. Hillenbrand, "Phase in nanooptics," ACS NANO, Vol. 6, 8-12, 2012.
doi:10.1021/nn205008y Google Scholar
52. Wu, C., A. B. Khanikaev, R. Adato, N. Arju, A. Ali Yanik, H. Altug, and G. Shvets, "Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers," Nature Mater., Vol. 11, 69-75, 2012. Google Scholar
53. Andrews, D. L., Structured Light and Its Applications: An Introduction to Phase-structured Beams and Nanoscale Optical Forces, 2008. Google Scholar
54. Johnson, C., C. M. Marcus, M. P. Hanson, and A. C. Gossard, "Coulomb-modified Fano resonance in a one-lead quantum dot," Phys. Rev. Lett., Vol. 93, 106803, 2004.
doi:10.1103/PhysRevLett.93.106803 Google Scholar