Vol. 44
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2013-12-04
The Design of a Novel Compact Ultra-Wideband (UWB) Power Divider
By
Progress In Electromagnetics Research Letters, Vol. 44, 43-46, 2014
Abstract
The design of a compact coplanar power divider with novel structure is presented by making a full use of the theories of microstrip-to-slotline transition. To obtain two in-phase signals over a wide frequency range, the two output branches are placed in the same layer. Moreover, a half-wavelength slotline is employed to expand the working frequency range. The presented compact power divider shows a low insertion and good return loss performance at input port. The simulated and measured results have shown a good agreement over the frequency range 2.2 GHz-11 GHz.
Citation
Long Xiao, Hao Peng, and Tao Yang, "The Design of a Novel Compact Ultra-Wideband (UWB) Power Divider," Progress In Electromagnetics Research Letters, Vol. 44, 43-46, 2014.
doi:10.2528/PIERL13111205
References

1. Wilkinson, E. J., "An N-way hybrid power divider," IEEE Trans. Microw. Theory and Tech., Vol. 8, No. 1, 116-118, Jan. 1960.
doi:10.1109/TMTT.1960.1124668

2. Zhou, B., H. Wang, and W.-X. Sheng, "A modified UWB Wilkinson power divider using delta stub ," Progress In Electromagnetics Research Letters, Vol. 19, 49-55, 2010.

3. Wong, S.-W. and L. Zhu, "Ultra-wideband power divider with good in-band splitting and isolation performances," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 8, 518-520, Aug. 2008.
doi:10.1109/LMWC.2008.2001009

4. Chang, L., C. Liao, L.-L. Chen, W. B. Lin, X. Zheng, and Y.-L. Wu, "Design of an ultra-wideband power divider via the coarse-grained parallel microgenetic algorithm," Progress In Electromagnetics Research, Vol. 124, 425-440, 2012.
doi:10.2528/PIER11120517

5. Chiang, C. T. and B. K. Chung, "Ultra wideband power divider using tapered line," Progress In Electromagnetics Research, Vol. 106, 61-73, 2010.
doi:10.2528/PIER10061603

6. Zhuge, C.-L., K.-J. Song, and Y. Fan, "Ultra-wideband (UWB) power divider based on signal interference techniques," Microw. Opt. Tech. Lett., Vol. 54, No. 4, 1028-1030, Apr. 2012.
doi:10.1002/mop.26745

7. Deng, , P.-H., J.-H. Guo, and W.-C. Kuo, "New Wilkinson power dividers based on compact stepped-impedance transmission lines and shunt open stubs," Progress In Electromagnetics Research, Vol. 123, 407-426, 2012.
doi:10.2528/PIER11111612

8. Sedighy, S. H. and M. Khalaj-Amirhosseini, "Compact Wilkinson power divider using stepped impedance transmission lines," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 13, 1773-1782, 2011.
doi:10.1163/156939311797453980

9. Bialkowski, M. E. and A. M. Abbosh, "Design of a compact UWB out-of-phase power divider," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 4, 289-291, Apr. 2007.
doi:10.1109/LMWC.2007.892979

10. Bialkowski, M. E., A. M. Abbosh, and N. Seman, "Compact microwave six-port vector voltmeters for ultra-wideband applications," IEEE Trans. Microw. Theory and Tech., Vol. 55, No. 10, 2216-2223, Oct. 2007.
doi:10.1109/TMTT.2007.906539

11. Peng, H., Z. Q. Yang, Y. Liu, T. Yang, and K. Tan, "An improved UWB non-coplanar power," divider," Progress In Electromagnetics Research, Vol. 138, 31-39, 2013.

12. Song, K. J. and Q. Xue, "Novel ultra-wideband (UWB) multilaye slotline power divider with bandpass response," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 1, 13-15, Jan. 2010.
doi:10.1109/LMWC.2009.2035951

13. Abbosh, A. M., "Multilayer inphase power divider for UWB applications," Microw. Opt. Tech. Lett., Vol. 50, No. 5, 1402-1405, May 2008.
doi:10.1002/mop.23379

14. Zinieris, M. M., R. Sloan, and L. E. Davis, "A broadband microstrip-to-slot-line transition," Microw. Opt. Tech. Lett., Vol. 18, No. 5, 339-342, Aug. 1998.
doi:10.1002/(SICI)1098-2760(19980805)18:5<339::AID-MOP9>3.0.CO;2-9

15. Schuppert, B., "Microstrip/Slotline transitions: Modeling and experimental investigation," IEEE Trans. Microw. Theory and Tech., Vol. 36, No. 8, 1272-1282, Aug. 1988.
doi:10.1109/22.3669