Vol. 44
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-01-22
Pulse Compression with Gaussian Weighted Chirp Modulated Excitation for Infrared Thermal Wave Imaging
By
Progress In Electromagnetics Research Letters, Vol. 44, 133-137, 2014
Abstract
This paper proposes a novel signal processing approach to thermal non-destructive testing by incorporating Gaussian window function onto the linear frequency modulated incident heat flux to achieve better pulse compression properties. The present work highlights a finite element analysis based modeling and simulation technique in order to test the capabilities of the proposed windowing scheme over the conventional frequency modulated thermal wave imaging method. It is shown that by using Gaussian weighted chirp thermal stimulus, high depth resolution can be achieved.
Citation
Vanita Arora, and Ravibabu Mulaveesala, "Pulse Compression with Gaussian Weighted Chirp Modulated Excitation for Infrared Thermal Wave Imaging," Progress In Electromagnetics Research Letters, Vol. 44, 133-137, 2014.
doi:10.2528/PIERL13111301
References

1. Rosencwaig, A., "Thermal-wave imaging," Science, Vol. 218, No. 4569, 223-228, 1982.
doi:10.1126/science.218.4569.223

2. Almond, D. P. and P. Patel, Photothermal Science and Techniques, Chapman & Hall Publication, 1996.

3. Maldague, X. P. V., Theory and Practice of Infrared Thermography for Nondestructive Testing, Wiley, New York, 2001.

4. Maldague, X. P. V. and S. Marinetti, "Pulse phase infrared thermography," Journal of Applied Physics, Vol. 79, No. 5, 2694-2698, 1996.
doi:10.1063/1.362662

5. Dillenz, A., T. Zweschper, G. Riegert, and G. Busse, "Progress in phase angle thermography," Review of Scientific Instruments, Vol. 74, No. 1, 417-419, 2003.
doi:10.1063/1.1524010

6. Tabatabaei, N., A. Mandelis, and B. T. Amaechi, "Thermophotonic radar imaging: An emissivity-normalized modality with advantages over phase lock-in thermography," Applied Physics Letters, Vol. 98, No. 16, Article No. 163706, 2011.

7. Mulaveesala, R. and S. Tuli, "Implementation of frequency modulated thermal wave imaging for non-destructive subsurface defect detection," Insight, Vol. 47, No. 4, 206-208, 2005.
doi:10.1784/insi.47.4.206.63156

8. Mulaveesala, R., P. Pal, and S. Tuli, "Interface study of bonded wafers by digitized linear frequency modulated thermal wave imaging," Sensors and Actuators A, Vol. 128, 209-216, 2006.
doi:10.1016/j.sna.2006.01.004

9. Mulaveesala, R. and S. Tuli, "Theory of frequency modulated thermal wave imaging for non-destructive sub-surface defect detection," Applied Physics Letters, Vol. 89, No. 19, 2006.
doi:10.1063/1.2382738

10. Mulaveesala, R., V. Jyani Somayajulu, and P. Singh, "Pulse compression approach to infrared non-destructive characterization," Rev. Sci. Instrum., Vol. 79, No. 9, 094901-1-094901-6, 2008.

11. Ghali, V. S., N. Jonnalagadda, and R. Mulaveesala, "Three-dimensional pulse compression for infrared nondestructive testing," IEEE Sensors Journal, Vol. 9, No. 7, 832-833, 2009.
doi:10.1109/JSEN.2009.2024042

12. Ghali, V. S., R. Mulaveesala, and M. Takei, "Cross-correlation based compression technique for frequency modulated thermal wave imaging," 10th International Conference on Quantitative InfraRed Thermography, Quebec, Canada, Jul. 27-30, 2010.

13. Ghali, , V. S. and R. Mulaveesala, "Comparative data processing approaches for thermal wave imaging techniques for non-destructive testing," Sensing and Imaging, Vol. 12, No. 1-2, 15-33, 2011.
doi:10.1007/s11220-011-0059-0

14. Ghali, V. S., R. Mulaveesala, and M. Takei, "Frequency modulated thermal wave imaging for non destructive testing of carbon fiber reinforced plastic materials," Meas. Sci. Technol., Vol. 22, 104018, 2011.
doi:10.1088/0957-0233/22/10/104018

15. Mulaveesala, R. and V. S. Ghali, "Coded excitation for infrared non-destructive testing of carbon fiber reinforced plastics," Rev. Sci. Instrum., Vol. 82, 054902, 2011.
doi:10.1063/1.3594551

16. Mulaveesala, R., S. S. B. Panda, R. N. Mude, and M. Amarnath, "Non-destructive evaluation of concrete structures by non-stationary thermal wave imaging," Progress In Electromagnetics Research Letters, Vol. 32, 39-48, 2012.
doi:10.2528/PIERL12042005

17. Mulaveesala, R., V. S. Ghali, and V. Arora, "Applications of non-stationary thermal wave imaging methods for characterization of fibre reinforced plastic materials," Electronics Letters, Vol. 49, No. 2, 118-119, 2013.
doi:10.1049/el.2012.3844

18. Wehner, D. R., High Resolution Radar, Norwood, Massachusetts, Artech House, 1994.