Vol. 58
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2014-02-26
Design and Analysis of Permanent Magnet Motor with Movable Stators
By
Progress In Electromagnetics Research B, Vol. 58, 219-232, 2014
Abstract
Permanent-magnetmotorsare widely usedin-wheel motors of electric vehiclesand hybrid vehicles. Based on a movable stator design, this paper presents a new type permanent-magnet motor, whose torque can be adjusted in order to meetdifferent driving requirements. The stator geometryis varied by means of changing movable stator positions.Accordingly, the air-gap lengthin permanent-magnet motorsis changed so that torque can be adjusted. To derive an analytical model, Fourier series expansions are employed to formulate air-gap geometry variation. The analytical modelis validated by finite element numerical results.Concerning motor torque variation capability achieved in this study, the ratio of the largest vs. the smallest torque is 2.3.
Citation
Chun-Chi Lai, Tzong-Shi Liu, and Ming-Tsan Peng, "Design and Analysis of Permanent Magnet Motor with Movable Stators," Progress In Electromagnetics Research B, Vol. 58, 219-232, 2014.
doi:10.2528/PIERB13121506
References

1. Toba, A. and A. T. Lipo, "Generic torque-maximizing design methodology of surface permanentmagnet vernier machine," IEEE Transactions on Industry Applications, Vol. 31, No. 6, 1539-1546, 2000.

2. Ishizaki, A., T. Tanaka, K. Takasaki, and S. Nishikata, "Theory and optimum design of PM vernier motor," Seventh International Conference on Electrical Machines and Drives, (Conf. Publ. No. 412), 208-212, 1995.
doi:10.1049/cp:19950864

3. Toba, A. and A. T. Lipo, "Novel dual-excitation permanent magnet vernier machine," Industry Applications Conference, Vol. 4, 2539-2544, 1999.

4. Tasaki, Y., Y. Kashitani, R. Hosoya, and S. Shimomura, "Design of the vernier machine with permanent magnets on both stator and rotor side," Power Electronics and Motion Control Conference, Vol. 1, 302-309, 2012.
doi:10.1109/IPEMC.2012.6258858

5. Ho, S. L., S. Niu, and W. N. Fu, "Design of the vernier machine with permanent magnets on both stator and rotor side," IEEE Transactions on Magnetics, Vol. 47, No. 10, 3280-3283, 2011.
doi:10.1109/TMAG.2011.2157309

6. VuXuan, H., D. Lahaye, S. O. Ani, H. Polinder, and J. A. Ferreira, "Effect of design parameters on electromagnetic torque of PM machines with concentrated windings using nonlinear dynamic FEM," IEEE International Electric Machine & Drives Conference, 383-388, 2011.

7. Sanada, M., K. Ito, and S. Morimoto, "Equivalent air gap shortening by three-dimensional gap structure for torque improvement of electric machines," Electrical Machines and Systems Conference, 1-6, 2009.

8. Zhang, Y., L. Jing C. Li, G. Tu, and J. Jiang, "Semi-analytical method for air gap main magnetic field computation of direct drive permanent magnet torque motors," Electrical Machines and Systems Conference, 1-4, 2011.

9. Kano, Y. and N. Matsui, "A design approach for direct-drive permanent-magnet motors," IEEE Transactions on Industry Application, Vol. 44, No. 2, 1-4, 2008.
doi:10.1109/TIA.2008.916600

10. Chau, K. T., D. Zhang, J. Z. Jiang, C. Liu, and Y. Zhang, "Design of a magnetic-geared outer-rotor permanent-magnet brushless motor for electric vehicles," IEEE Transactions on Magnetics, Vol. 43, No. 6, 2504-2506, 2007.
doi:10.1109/TMAG.2007.893714

11. Chen, G. H. and K. J. Tseng, "Design of a permanent-magnet direct-driven wheel motor drive for electric vehicle," Power Electronics Specialists Conference, Vol. 2, 1933-1939, 1996.

12. Zhao, W., M. Cheng, and R. Cao, "Electromagnetic analysis of a modular flux-switching permanent-magnet motor using finite-element method," Progress In Electromagnetics Research B, Vol. 43, 239-253, 2012.
doi:10.2528/PIERB12062908

13. Boughrara, K., T. Lubin, R. Ibtiouen, and M. N. Benallal, "Analytical calculation of parallel double excitation and spoke-type permanent-magnet motors; simplified versus exact model," Progress In Electromagnetics Research B, Vol. 47, 145-178, 2013.
doi:10.2528/PIERB12111306

14. Mahmoudi, A., N. A. Rahim, and H. W. Ping, "Genetic algorithm and finite element analysis for optimum design of slotted torus axial-flux permanent-magnet brushless DC motor," Progress In Electromagnetics Research B, Vol. 33, 383-407, 2011.
doi:10.2528/PIERB11070204

15. Gao, J., L. Zhang, and X. Wang, AC Machine Systems, Springer-Verlag, Berlin, 2009.
doi:10.1007/978-3-642-01153-5

16. Fitzgerald, A. E., C. Kingsley, Jr., and S. D. Umans, Electric Machinery, McGraw-Hill, Singapore, 1983.

17. Islam, M. S., S. Mir, and T. Sebastain, "Issues in reducing the cogging torque of mass-produced permanent-magnet brushless DC motor," IEEE Transactions on Industry Applications, Vol. 40, No. 3, 813-820, 2004.
doi:10.1109/TIA.2004.827469