Vol. 58
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2014-02-12
On the Suitability of Using Halbach Arrays as Potential Energy Storage Media
By
Progress In Electromagnetics Research B, Vol. 58, 151-166, 2014
Abstract
In the work presented here, the suitability of an unusual energy storage medium is investigated. The energy storage system is based on the forceful compression of two magnetic Halbach arrays. The mass and volume energy density is obtained and compared to existing common energy storage systems. The charge and discharge times and depths are also discussed. In addition, limits and considerations, which are needed for practical implementation, e.g., risk of demagnetization, internal mechanical stresses, heating of the magnetic structure and financial efficiency are investigated.
Citation
Daniel Mansson, "On the Suitability of Using Halbach Arrays as Potential Energy Storage Media," Progress In Electromagnetics Research B, Vol. 58, 151-166, 2014.
doi:10.2528/PIERB14010704
References

1. Ter-Gazarian, A. G., Energy Storage for Power Systems, 2nd Ed., The Institution of Engineering and Technology, London, 2011.
doi:10.1049/PBPO063E

2. Huggins, R. A., Energy Storage, Springer Science+Business Media, New York, 2010.
doi:10.1007/978-1-4419-1024-0

3. Rosen, M. A. Ed., Energy Storage, Nova Science Pub Inc., Hauppauge, 2012.

4. Grijalva, S. and M. U. Tariq, "Prosumer-based smart grid architecture enables a flat, sustainable electricity industry," IEEE PES Innovative Smart Grid Technologies (ISGT), 2011.        Google Scholar

5. Zheng, J., D. W. Gao, and L. Li, "Smart meters in smart grid: An overview," IEEE Green Technologies Conference, 2013.        Google Scholar

6., Supermagnete, Available: http://www.supermagnete.de/eng/.        Google Scholar

7. Pawlowski, M., "Permanent magnet energy storage apparatus,", U.S. Patent 5446319 A, August 29, 1995.        Google Scholar

8., Finite Element Method Magnetics, Available: http://www.femm.info/.        Google Scholar

9. Meeker, D., "Force on a taper plunger magnet,", Available: http://www.femm.info/wiki/RotersExample.        Google Scholar

10., Vizimag, Available: http://www.softpedia.com/get/Science-CAD/Vizimag.shtml.        Google Scholar

11. Jackson, J. D., Classical Electrodynamics, 3rd Ed., John Wiley & Sons Inc., Hoboken, 1999.

12. Mallinson, J. C., "One-sided fluxes --- A magnetic curiosity?," IEEE Trans. Magnetics, Vol. 9, 678-682, 1973.
doi:10.1109/TMAG.1973.1067714        Google Scholar

13. Halbach, K., "Physical and optical properties of rare earth Cobalt magnets," Nuclear Instruments and Methods in Physics Research, Vol. 187, 109-117, August 1981.
doi:10.1016/0029-554X(81)90477-8        Google Scholar

14. Post, R. F. and D. D. Ryutov, "The inductrack approach to magnetic levitation," MAGLEV 2000 The 16th International Conference on Magnetically Levitated Systems and Linear Drives, Rio de Janeiro, Brazil, June 6-11, 2000.        Google Scholar

15. Pyrhone, J., T. Jokinen, and V. Hrabovcova, Design of Rotating Electrical Machines, John Wiley & Sons, Hoboken, 2009.

16. Friend, P., "Magnetic levitation train technology 1," Tech. Rep., Department of Electrical and Computer Engineering, Bradley University, May 2004.        Google Scholar

17. Griffiths, D. J., "Introduction to Electrodynamics," Prentice-Hall Inc., Upper Saddle River, 1999.        Google Scholar

18. Ma, G. T., J. S. Wang, and S. Y. Wang, "3D finite element modeling of a Maglev system using bulk high Tc superconductor and its application," Applications of High-Tc Superconductivity, A. Luiz (ed.), InTech, Available: http://www.intechopen.com/books/applications-of-high-tc-superconductivity.        Google Scholar

19. Sakamoto, T. and H.Wakimoto, "Internal stress analysis of Halbach array magnets with application to linear synchronous motors," International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2008, SPEEDAM 2008, 136-141, June 11-13, 2008.        Google Scholar

20. Rovers, J. M. M., J. W. Jansen, E. A. Lomonova, and M. J. C. Ronde, "Calculation of the static forces among the permanent magnets in a Halbach array," IEEE Trans. Magnetics, Vol. 45, No. 10, October 2009.        Google Scholar

21., Magpole, Available: http://www.magnetpole.com/smco-magnets-71.html.        Google Scholar

22. Donoso, G., C. L. Ladera, and P. Martin, "Damped fall of magnets inside a conducting pipe," Am. J. Phys., Vol. 79, No. 2, February 2011.
doi:10.1119/1.3531964        Google Scholar

23. Donoso, G., C. L. Ladera, and P. Martin, "Magnet fall inside a conductive pipe: Motion and the role of the pipe wall thickness," Eur. J. Phys., Vol. 30, 855-869, 2009.
doi:10.1088/0143-0807/30/4/018        Google Scholar

24. Beckman, O., G. Grimvall, B. Kjollerstrom, and T. Sundstrom, Energilara --- grundlaggande termodynamik, Solna, Liber, 2005.

25. Arslan, M. A., "Flywheel geometry design for improved energy storage using finite element analysis," Materials & Design, Vol. 29, 514-518, 2008.
doi:10.1016/j.matdes.2007.01.020        Google Scholar

26., Electricity storage association, Available: http://www.electricitystorage.org/technology/storage technologies/technology comparison.
doi:10.1016/j.matdes.2007.01.020        Google Scholar

27. "Rare-earth free permanent magnets,", Available: http://refreepermag-fp7.eu/project/what-is-refreepermag/.
doi:10.1016/j.matdes.2007.01.020        Google Scholar