Vol. 45
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-02-15
A Novel Uni-Planar Compact EBG Structure
By
Progress In Electromagnetics Research Letters, Vol. 45, 31-34, 2014
Abstract
The radiation and propagation characteristic can be improved by the microstrip structure of the electromagnetic band-gap, which is becoming miniaturized today. In order to reduce the influence to the width of the band-gap brought by the miniaturization of the UC-EBG structure, a novel UC EBG structure is brought out. The band-gap width is guaranteed, meanwhile, the unit length is reduced to 0.1λg. Results of measurement indicate that this structure is effectively miniaturized, has an excellent performance, and can be used in the antenna or microwave circuit fields.
Citation
Peng Chen, Xiao Dong Yang, Chao Yang Chen, and Yu Ning Zhao, "A Novel Uni-Planar Compact EBG Structure," Progress In Electromagnetics Research Letters, Vol. 45, 31-34, 2014.
doi:10.2528/PIERL14012308
References

1. Alam, M. S., M. T. Islam, and N. Misran, "Inverse triangular-shape CPW-fed antenna loaded with EBG reflector," Electronics Letters, Vol. 49, No. 2, 86-88, 2013.
doi:10.1049/el.2012.3957

2. Qiu, L., F. Zhao, K. Xiao, S.-L. Chai, and J.-J. Mao, "Transmit-receive isolation improvement of antenna arrays by using EBG structures," IEEE Antennas and Wireless Propagation Letters,, Vol. 11, 93-96, 2012.

3. Al-Hasan, M. J., T. A. Denidni, and A. Sebak, "A new UC-EBG based-dielectric resonator antenna for millimeter-wave applications," IEEE International Symposium on Antennas and Propagation (APSURSI), 1274-1276, 2011.
doi:10.1109/APS.2011.5996520

4. Gao, X., Y. Qi, and Y. C. Jiao, "Design of multiplate back-reflector for a wideband slot antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 773-776, 2013.
doi:10.1109/LAWP.2013.2270945

5. Yi, S., X. Lei, C. Z. Zhang, D. Jun, and J. Chen, "Mutual coupling reduction in microstrip antennas by using dual layer uniplanar compact EBG (UC-EBG) structure," International Conference on Microwave and Millimeter Wave Technology (ICMMT), 180-183, 2010.

6. Lin, B.-Q., Q.-R. Zheng, and N.-C. Yuan, "A novel planar PBG structure for size reduction," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 5, 269-271, 2006.
doi:10.1109/LMWC.2006.873492

7. Yang, F.-R., K.-P. Ma, Y. Qian, and T. Itoh, "A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 8, 1509-1514, 1999.
doi:10.1109/22.780402

8. Vaidya, A. R., R. K. Gupta, S. K. Mishra, and J. Mukherjee, "High-gain low side lobe level Fabry Perot Cavity antenna with feed patch array," Progress In Electromagnetics Research C, Vol. 28, 223{-238, 2012.
doi:10.2528/PIERC12031503

9. Wang, N., C. Zhang, Q. Zeng, N. Wang, and J.-D. Xu, "New dielectric 1-D EBG structure for the design of wideband resonator antennas," Progress In Electromagnetics Research, Vol. 141, 233-248, 2013.
doi:10.2528/PIER13061207

10. Alam, M. S., M. T. Islam, and N. Misran, "Performance investigation of a uni-planar compact electromagnetic bandgap (UC-EBG) structure for wide bandgap characteristics," Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), 637-640, 2012.