1. EI Zooghby, A., "Potentials of smart antennas in CDMA systems and uplink improvements," IEEE Antennas and Propagation Magazine, Vol. 43, No. 5, 172-177, Oct. 2001. Google Scholar
2. Blass, J., "Multi-directional antenna: New approach top stacked beams," IRE International Convention Record, Vol. 8, 48-50, Mar. 1960.
doi:10.1109/IRECON.1960.1150892 Google Scholar
3. Rotman, W. and R. Tuner, "Wide-angle microwave lens for line source applications," IEEE Transactions on Antennas and Propagation, Vol. 11, No. 6, 623-632, Nov. 1963.
doi:10.1109/TAP.1963.1138114 Google Scholar
4. Butler, J. and R. Lowe, "Beam-forming matrix simplifies design of electrically scanned antennas," Electron Design, Vol. 9, 170-173, Apr. 1961. Google Scholar
5. White, W., "Pattern limitations in multiple-beam antennas," IRE transactions on Antennas and Propagation, Vol. 10, 430-436, Jul. 1962. Google Scholar
6. Tseng, C.-H., C.-J. Chen, and T.-H. Chu, "A low-cost 60-GHz switched-beam patch antenna array with Butler matrix network," IEEE Antennas and Propagation Letters, Vol. 7, 432-435, Jul. 2008. Google Scholar
7. Khan, O. U., "Design of X-band 4 x 4 Butler matrix for microstrip patch antenna array," TENCON'06, 1-4, Hong Kong, Nov. 14-17, 2006. Google Scholar
8. Ibrahim, S. Z. and M. K. A. Rahim, "Switched beam antenna using omnidirectional antenna array," APACE'07, 1-4, Melaka, Malaysia, Dec. 4-6, 2007. Google Scholar
9. Neron, J.-S. and G.-Y. Delisle, "Microstrip EHF Butler matrix design and realization," ETRI Journal, Vol. 27, No. 07, 788-797, Dec. 2005.
doi:10.4218/etrij.05.1005.0012 Google Scholar
10. El-Tager, A. M. and M. A. Eleiwa, "Design and implementation of a smart antenna using Butler matrix for ISM-band," PIERS Proceedings, 571-575, Beijing, China, Mar. 23-27, 2009. Google Scholar
11. Remez, J. and R. Carmon, "Compact designs of waveguide Butler matrices," IEEE Antennas and Wireless Propagation Letters, Vol. 05, 27-31, Dec. 2006.
doi:10.1109/LAWP.2005.863615 Google Scholar
12. Djerafi, T., N. J. G. Fonseca, and K. Wu, "Design and implementation of a planar 4 x 4 Butler matrix in SIW technology for wide band high power applications," Progress In Electromagnetics Research B, Vol. 35, 29-51, Oct. 2011. Google Scholar
13. Chen, C.-J. and T.-H. Chu, "Design of a 60-GHz substrate integrated waveguide Butler matrix-a systematic approach," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 07, 1724-1733, Jul. 2010.
doi:10.1109/TMTT.2010.2050097 Google Scholar
14. Mohamed Ali, A. A., N. J. G. Fonseca, F. Coccetti, and H. Aubert, "Design and implementation of wo-layer compact wideband Butler matrices in SIW technology for Ku-band applications," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 02, 503-512, Feb. 2011.
doi:10.1109/TAP.2010.2093499 Google Scholar
15. Cheng, Y. J., C. A. Zhang, and Y. Fan, "Miniaturized multilayer folded substrate integrated waveguide Butler matrix," Progress In Electromagnetics Research C, Vol. 21, 45-58, Apr. 2011. Google Scholar
16. Ahmad, S. R. and F. C. Seman, "4-port Butler matrix for switched multibeam antenna array," APACE'05, Johor, Malaysia, Dec. 20-21, 2005. Google Scholar
17. Dominguez, G. E., J.-M. Fernandez-Gonzalez, P. Padilla, and M. Sierra-Castafier, "Mutual coupling reduction using EBG in steering antennas," EEE Antennas and Wireless Propagation Letters, Vol. 11, 1265-1268, Dec. 2006. Google Scholar
18. Xu, F. and K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 01, 66-73, Jan. 2005.
doi:10.1109/TMTT.2004.839303 Google Scholar
19. Grigoropoulos, N., B. Sanz-Izquierdo, and P. R. Young, "Substarte integrated folded waveguides (SIFW) and filters," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 12, 829-831, Dec. 2005.
doi:10.1109/LMWC.2005.860027 Google Scholar
20. Grigoropoulos, N. and P. R. Young, "Compact folded waveguides," 34th European Microwave Conference, 973-976, Amsterdam, Oct. 12-14, 2004. Google Scholar
21. Pozar, D, M., Microwave Engineering, 4th Edition, Wiley, New York, Dec. 2011.
22. Zhai, G. H., W. Hong, K. Wu, J. X. Chen, P. Chen, J. Wei, and H. J. Tang, "Folded half mode substrate integrated waveguide 3 dB coupler," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 08, 512-514, Aug. 2008.
doi:10.1109/LMWC.2008.2001006 Google Scholar
23. Zhai, G. H., W. Hong, K. Wu, J. X. Chen, P. Chen, J. Wei, and H. J. Tang, "Substrate integrated folded waveguide (SIFW) narrow-wall directional coupler," ICMMT'08, Vol. 01, 174-177, Nanjing, China, Apr. 21-24, 2008. Google Scholar
24. Liu, B., W. Hong, Y. Zhang, J. X. Chen, and K. Wu, "Half-mode substrate integrated waveguide double-slot coupler," Electronics Letters, Vol. 43, No. 02, Jan. 2007. Google Scholar
25. Liu, B., W. Hong, Y. Q. Wang, Q. H. Lai, and K. Wu, "Half mode substrate integrated waveguide (HMSIW) 3-dB coupler," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 01, 22-24, Jan. 2007.
doi:10.1109/LMWC.2006.887244 Google Scholar
26. Che, W., B. Fu, P. Yao, Y. L. Chow, and E. K. N. Yung, "A compact substrate integrated waveguide H-plane horn antenna with dielectric arc lens," International Journal of RF and Microwave Computer-aided Engineering, 473-479, Jun. 2007.
doi:10.1002/mmce.20237 Google Scholar
27. Wang, H., D. G. Fang, B. Zhang, and W. Q. Che, "Dielectric loaded substrate integrated waveguide H-plane horn antennas," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 03, 640-647, Mar. 2010.
doi:10.1109/TAP.2009.2039298 Google Scholar