Vol. 45
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-04-02
Novel Filtering Power Divider Using Multiple Internal Resistors
By
Progress In Electromagnetics Research Letters, Vol. 45, 75-80, 2014
Abstract
In this paper, we present a novel 3rd filtering power divider with high in-band isolation. The proposed device employs six quarter-wavelength resonators and six internal isolation resistors symmetrically arranged to require the power division and filtering function. Based on the circuit topology, the multiple resistors can be integrated to obtain a good isolation and port impedance matching. Compared to the conventional power divider with bandpass response, the new device is easy to realize a high-order design with a good isolation. For demonstration, a prototype operating at 1.5 GHz with more than 20 dB in-band isolation is implemented. Simulated and experimental results agree well, validating the proposed methodologies.
Citation
Yun Long Lu, and Gao-Le Dai, "Novel Filtering Power Divider Using Multiple Internal Resistors," Progress In Electromagnetics Research Letters, Vol. 45, 75-80, 2014.
doi:10.2528/PIERL14022703
References

1. Pozar, D. M., Microwave Engineering, Wiley, New York, 2006.

2. Tang, X. and K. Mouthaan, "Filter integrated Wilkinson power dividers," Microw. Opt. Technol. Lett., Vol. 52, No. 12, 2830-2833, Dec. 2010.
doi:10.1002/mop.25605

3. Fan, F., Z. Yan, and J. Jiang, "Design of a novel compact power divider with harmonic suppression," Progress In Electromagnetics Research Letters, Vol. 5, 151-157, 2008.
doi:10.2528/PIERL08111808

4. Deng, P. H., L. C. Dai, and Y. D. Chen, "Integrating equal-split Wilkinson power dividers and coupled-line bandpass filters," PIERS Proceedings, 1249-1253, Moscow, Russia, Aug. 19-23, 2012.

5. He, , Z., J. Cai, Z. Shao, X. Li, and Y. Huang, "A novel power divider integrated with SIW and DGS technology," Progress In Electromagnetics Research, Vol. 139, 289-301, 2013.
doi:10.2528/PIER13022005

6. Wong, S. W. and L. Zhu, "Ultra-wideband power divider with good in-band splitting and isolation performances," IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 8, 518-520, Aug. 2008.
doi:10.1109/LMWC.2008.2001009

7. Deng, P. H. and L. C. Dai, "Unequal Wilkinson power dividers with favorable selectivity and high-isolation using coupled-line filter transformers," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 6, 1520-1529, Jun. 2012.
doi:10.1109/TMTT.2012.2189409

8. Cheong, P., K. Lai, and K. Tam, "Compact Wilkinson power divider with simultaneous bandpass response and harmonic suppression," IEEE MTT-S Int. Microw. Symp. Dig., Vol. 1, 1588-1591, Anaheim, CA, USA, May 2010.

9. Gao, S. S., S. Sun, and S. Q. Xiao, "A novel wideband bandpass power divider with harmonic-suppressed ring resonator," IEEE Microw. Wireless Compon. Lett., Vol. 23, No. 3, 119-121, Mar. 2013.
doi:10.1109/LMWC.2013.2244873

10. Li, Y. C., Q. Xue, and X. Y. Zhang, "Single- and dual-band power divider integrated with bandpass filters," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 1, 69-76, Jan. 2013.
doi:10.1109/TMTT.2012.2226600

11. Zhang, X. Y., X. K. Wang, and B. J. Hu, "Compact filtering power divider with enhanced second-harmonic suppression," IEEE Microw. Wireless Compon. Lett., Vol. 23, No. 9, 483-485, Sep. 2013.
doi:10.1109/LMWC.2013.2274993

12. Chen, C.-F. and C.-Y. Lin, "Compact microstrip filtering power dividers with good in-band isolation performance," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 1, 17-19, Jan. 2014.
doi:10.1109/LMWC.2013.2287243

13. Shao, J. Y., S. C. Huang, and Y. H. Pang, "Wilkinson power divider incorporating quasi-elliptic filters for improved out-of-band rejection," Electron. Lett., Vol. 47, No. 23, 1288-1289, Nov. 2011.
doi:10.1049/el.2011.2766

14. Chen, C. C., T. Y. Huang, T. M. Shen, and R. B. Wu, "Design of miniaturized filtering power dividers for system-in-a-package," IEEE Trans. Compon., Packag., Manufact. Technol., Vol. 3, No. 10, 1663-1672, Oct. 2013.
doi:10.1109/TCPMT.2013.2254488

15. Hong, J.-S. and M. J. Lancaster, Microstrip Filter for RF/Microwave Application, Wiley, New York, NY, USA, 2001.
doi:10.1002/0471221619