Vol. 60
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2014-05-21
An Integral Equation Formulation for TM Scattering by a Conducting Cylinder Coated with an Inhomogeneous Dielectric/Magnetic Material
By
Progress In Electromagnetics Research B, Vol. 60, 49-62, 2014
Abstract
A volume-surface integral equation (VSIE) formulation is developed for determining the electromagnetic TM scattering by a two-dimensional conducting cylinder coated with an inhomogeneous dielectric/magnetic material. The electric field integral equations (EFIEs) are utilized to derive the VSIE. The surface EFIE is applied to the conducting surface, while the volume EFIE is applied to the coating region. By employing the surface and equivalence principles, the problem is reduced into a set of coupled integral equations in terms of equivalent electric and magnetic currents radiating into unbounded space. The moment method is used to solve the integral equations. Numerical results for the bistatic radar cross section for different structures are presented. The well-known exact series-solution for a conducting circular cylinder coated with multilayers of homogeneous materials is used along with the available published data to validate the results. The influence of using coatings with double-positive (DPS) and/or double-negative (DNG) materials on the radar cross section is investigated.
Citation
Ahmed A. Sakr, Ezzeldin A. Soliman, and Alaa Abdelmageed, "An Integral Equation Formulation for TM Scattering by a Conducting Cylinder Coated with an Inhomogeneous Dielectric/Magnetic Material," Progress In Electromagnetics Research B, Vol. 60, 49-62, 2014.
doi:10.2528/PIERB14031502
References

1. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley, New York, 1989.

2. Tang, C. C. H., "Backscattering from dielectric-coated infinite cylindrical obstacles," J. Appl. Phys., Vol. 28, 628-633, 1957.
doi:10.1063/1.1722815

3. Richmond, J. H., "Scattering by a conducting elliptic cylinder with dielectric coating," Radio Sci., Vol. 23, 1061-1066, 1988.
doi:10.1029/RS023i006p01061

4. Kakogiannos, N. B. and J. A. Roumeliotis, "Electromagnetic scattering from an infinite elliptic metallic cylinder coated by a circular dielectric one," IEEE Trans. Microwave Theory Tech., Vol. 38, 1660-1666, 1990.
doi:10.1109/22.60013

5. Roumeliotis, J. A., H. K. Manthopoulos, and V. K. Manthopoulos, "Electromagnetic scattering from an infinite circular metallic cylinder coated by an elliptic dielectric one," IEEE Trans. Microwave Theory Tech., Vol. 41, 862-869, 1993.
doi:10.1109/22.234523

6. Li, C. and Z. Shen, "Electromagnetic scattering by a conducting cylinder coated with metamaterials," Progress In Electromagnetics Research, Vol. 42, 91-105, 2003.
doi:10.2528/PIER03012901

7. Zouros, G. P., D. P. Kanoussis, and J. A. Roumeliotis, "Scattering by an infinite circular metallic cylinder coated by a lossless or lossy elliptical cylinder: Closed-form solutions," 7th European Conference on Antennas and Propagation (EuCAP), 2343-2347, Gothenburg, Sweden, 2013.

8. Bussy, H. E. and J. H. Richmond, "Scattering by a lossy dielectric circular cylindrical multilayer numerical values," IEEE Trans. Antennas Propagat., Vol. 23, 723-725, 1975.
doi:10.1109/TAP.1975.1141146

9. Sebak, A., L. Shafai, and H. A. Ragheb, "Electromagnetic wave scattering by a two-layered piecewise homogeneous confocal elliptic cylinder," Radio Sci., Vol. 26, 111-119, 1991.
doi:10.1029/90RS01843

10. Caorsi, S., M. Pastorino, and M. Raffetto, "Scattering by a conducting elliptic cylinder with a multilayer dielectric coating," Radio Sci., Vol. 32, 2155-2166, 1997.
doi:10.1029/97RS02205

11. Lin, J. M., Theory and Computation of Electromagnetic Fields, J. Wiley IEEE Press, Hobkon, New Jersey, 2010.

12. Poggio, A. J. and E. K. Miller, "Integral equation solutions of three-dimensional scattering problems," Computer Techniques for Electromagnetics, R. Mittra (ed.), Ch. 4, 129-163, Pergamon Press, New York, 1973.

13. Sheng, X. Q., J. M. Jin, J. Song, W. C. Chew, and C. C. Lu, "Solution of combined field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies," IEEE Trans. Antennas Propagat., Vol. 46, 1718-1726, 1998.
doi:10.1109/8.736628

14. Wu, T. K. and L. L. Tsai, "Scattering from arbitrarily-shaped lossy dielectric bodies of revolution," Radio Sci., Vol. 12, 709-718, 1977.
doi:10.1029/RS012i005p00709

15. Umashankar, K., A. Taflove, and S. M. Rao, "Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects," IEEE Trans. Antennas Propagat., Vol. 34, 758-766, 1986.
doi:10.1109/TAP.1986.1143894

16. Harrington, R. F., "Boundary integral formulations for homogeneous material bodies," Journal of Electromagnetic Waves and Applications, Vol. 3, No. 1, 1-15, 1989.
doi:10.1163/156939389X00016

17. Muller, C., Foundation of the Mathematical Theory of Electromagnetic Waves, Springer-Verlag, Berlin, 1969.
doi:10.1007/978-3-662-11773-6_1

18. Glisson, A. W., "An integral equation for electromagnetic scattering from homogeneous dielectric bodies," IEEE Trans. Antennas Propagat., Vol. 32, 173-175, 1984.
doi:10.1109/TAP.1984.1143279

19. Swatek, D. R. and I. R. Ciric, "Single source integral equation for wave scattering by multiply-connected dielectric cylinders," IEEE Trans. Magnetics, Vol. 32, 878-881, 1996.
doi:10.1109/20.497381

20. Swatek, D. R. and I. R. Ciric, "A recursive single-source surface integral equation analysis for wave scattering by heterogeneous dielectric bodies," IEEE Trans. Antennas Propagat., Vol. 48, 1175-1185, 2000.

21. Menshov, A. and V. Okhmatovski, "New single-source surface integral equations for scattering on penetrable cylinders and current °ow modeling in 2-D conductors," IEEE Trans. Microwave Theory Tech., Vol. 61, 341-350, 2013.
doi:10.1109/TMTT.2012.2227784

22. Huddleston, P. L., L. N. Medgyesi-Mitschang, and J. M. Putnam, "Combined field integral equation formulation for scattering by dielectrically coated conducting bodies," IEEE Trans. Antennas Propagat., Vol. 34, 510-520, 1986.
doi:10.1109/TAP.1986.1143846

23. Arvas, E., M. Ross, and Y. Qian, "TM scattering from a conducting cylinder of arbitrary cross-section covered by multiple layers of lossy dielectrics," IEE Proc., Pt. H, Vol. 135, 226-230, 1988.

24. Arvas, E. and T. K. Sarkar, "RCS of two-dimensional structures consisting of both dielectrics and conductors of arbitrary crosssection," IEEE Trans. Antennas Propagat., Vol. 37, 546-554, 1989.
doi:10.1109/8.24182

25. Rao, S. M., C. C. Cha, R. L. Cravey, and D. L. Wilkes, "Electromagnetic scattering from arbitrary shaped conducting bodies coated with lossy materials of arbitrary thickness," IEEE Trans. Antennas Propagat., Vol. 39, 627-631, 1991.
doi:10.1109/8.81490

26. Swatek, D. R. and I. R. Ciric, "Single integral equation for wave scattering by a layered dielectric cylinder," IEEE Trans. Magnetics, Vol. 34, 2724-2727, 1998.
doi:10.1109/20.717632

27. Harrington, R. F., Field Computation by Moment Methods, Macmillan, New York, 1968, Reprinted by Krieger Publishing Co., Melbourne, FL, 1982.

28. Min, X., W. Sun, W. J. Gesang, and K. M. Chen, "An efficient formulation to determine the scattering characteristics of a conducting body with thin magnetic coatings," IEEE Trans. Antennas Propagat., Vol. 39, 448-454, 1991.
doi:10.1109/8.81456

29. Lin, C. S. and M. T. Yaqoob, "Scattering from a conducting surface coated with multilayers of lossy dielectric material (transverse electric polarization)," J. Appl. Phys., Vol. 72, 3005-3008, 1992.
doi:10.1063/1.351508

30. Lin, C. S. and M. T. Yaqoob, "An efficient formulation to find the scattering field of a conducting cylinder coated with lossy magnetic material," J. Appl. Phys., Vol. 73, 4038-4041, 1993.
doi:10.1063/1.352871

31. Jin, J. M., V. V. Liepa, and C. T. Tai, "A volume-surface integral equation for electromagnetic scattering by inhomogeneous cylinders," Journal of Electromagnetic Waves and Applications, Vol. 2, No. 5-6, 573-588, 1988.
doi:10.1163/156939388X00170

32. Jin, J. M. and V. V. Liepa, "Simple moment method program for computing scattering from complex cylindrical obstacles," IEE Proc., Pt. H, Vol. 136, 321-329, 1989.

33. Volakis, J. L., "Alternative field representations and integral equations for modeling inhomogeneous dielectrics," IEEE Trans. Microwave Theory Tech., Vol. 40, 604-608, 1992.
doi:10.1109/22.121745

34. Volakis, J. L. and K. Sertel, Integral Equation Methods for Electromagnetics, Scitech Publishing Raleigh, NC, 2012.

35. Jin, J. M. and V. V. Liepa, "Application of hybrid finite element method to electromagnetic scattering from coated cylinders," IEEE Trans. Antennas Propagat., Vol. 36, 50-54, 1988.
doi:10.1109/8.1074

36. Wu, K. L., G. Y. Delisle, and D. G. Fang, "EM scattering of an arbitrary multiple dielectric coated conducting cylinder by coupled finite boundary element method," IEE Proc., Pt. H, Vol. 137, 1-4, 1990.

37. Leviatan, Y., A. Boag, and A. Boag, "Analysis of electromagnetic scattering from dielectrically coated conducting cylinders using a multifilament current model," IEEE Trans. Antennas Propagat., Vol. 36, 1602-1607, 1988.
doi:10.1109/8.9711

38. Chen, Z. N. and W. X. Zhang, "Electromagnetic scattering from a dielectric coated cylinder using OSRC-GMT," Electron. Lett., Vol. 29, 853-854, 1993.
doi:10.1049/el:19930570

39. Rao, T. C. K. and M. A. K. Hamid, "G.T.D. analysis of scattering from a dielectric-coated conducting cylinder," IEE Proc., Pt. H, Vol. 127, 143-153, 1980.

40. Wang, N., "Electromagnetic scattering from a dielectric coated cylinder," IEEE Trans. Antennas Propagat., Vol. 33, 960-963, 1985.
doi:10.1109/TAP.1985.1143696

41. Kim, H. T. and N. Wang, "UTD solution for electromagnetic scattering by a circular cylinder with thin lossy coatings," IEEE Trans. Antennas Propagat., Vol. 37, 1463-1472, 1989.
doi:10.1109/8.43566

42. Tanyer, S. G. and R. G. Olsen, "High-frequency scattering by a conducting circular cylinder coated with a lossy dielectric of nonuniform thickness," IEEE Trans. Antennas Propagat., Vol. 45, 689-697, 1997.
doi:10.1109/8.564095

43. Hussar, P., "A uniform GTD treatment of surface diffraction by impedance and coated cylinders," IEEE Trans. Antennas Propagat., Vol. 46, 998-1008, 1998.
doi:10.1109/8.704801

44. Goto, K., L. H. Loc, T. Kawana, and T. Ishihara, "Extended UTD solution for scattered fields by a coated conducting cylinder," Antennas and Propagation Society International Symposium (APSURSI), 1-2, Chicago, IL, 2012.

45. Sun, J., W. Sun, T. Jiang, and Y. Feng, "Directive electromagnetic radiation of a line source scattered by a conducting cylinder coated with left-handed metamaterial," Microwave & Opt. Technol. Lett., Vol. 47, 274-279, 2005.
doi:10.1002/mop.21145

46. Zainud-Deen, S. H., A. Z. Botros, and M. S. Ibrahim, "Scattering from bodies coated with metamaterial using FDFD method," Progress In Electromagnetics Research B, Vol. 2, 279-290, 2008.
doi:10.2528/PIERB07112803

47. Richmond, J. H., "Scattering by a dielectric cylinder of arbitrary cross-section shape," IEEE Trans. Antennas Propagat., Vol. 13, 334-341, 1965.
doi:10.1109/TAP.1965.1138427

48. Peterson, A. F., S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics, IEEE Press, Piscataway, NJ, 1998.

49. Bin-Jie, H., E. Y. Kai-Ning, Z. Jun, and T. Serge, "Scattering characteristics of conducting cylinder coated with nonuniform magnetized ferrite," Chinese Physics, Vol. 14, 2305-2313, 2005.
doi:10.1088/1009-1963/14/11/027