1. An, D. X., Z.-M. Zhou, X.-T. Huang, and T. Jin, "A novel imaging approach for high resolution squinted spotlight SAR based on the deramping-based technique and azimuth nlcs principle," Progress In Electromagnetics Research, Vol. 123, 485-508, 2012.
doi:10.2528/PIER11112110 Google Scholar
2. Chiang, C.-Y., Y.-L. Chang, and K.-S. Chen, "SAR image simulation with application to target recognition," Progress In Electromagnetics Research, Vol. 119, 35-57, 2011.
doi:10.2528/PIER11061507 Google Scholar
3. Dudgeon, D.-E. and R.-T. Lacoss, "An overview of automatic target recognition," The Lincoln Laboratory Journal, Vol. 6, 3-9, 1993. Google Scholar
4. Zhao, Q. and J.-C. Principe, "Support vector machines for SAR automatic target recognition," IEEE Trans. on Aerospace and Electronic Systems, Vol. 37, No. 2, 643-654, 2001.
doi:10.1109/7.937475 Google Scholar
5. Zhao, Q., J. C. Principe, V. L. Brennan, D. Xu, and Z. Wang, "Synthetic aperture radar automatic target recognition with three strategies of learning and representation," Optical Engineering, Vol. 39, 1230-1236, 2000.
doi:10.1117/1.602495 Google Scholar
6. Huan, R.-H. and Y. Pan, "Target recognition for multi-aspect SAR images with fusion strategies," Progress In Electromagnetics Research, Vol. 134, 267-288, 2013.
doi:10.2528/PIER12100304 Google Scholar
7. Papson , S. and R.-M. Narayanan, "Classification via the shadow region in SAR imagery," IEEE Trans. on Aerospace and Electronic Systems, Vol. 48, No. 2, 969-980, 2012.
doi:10.1109/TAES.2012.6178042 Google Scholar
8. Potter, L.-C. and R.-L. Moses, "Attributed scattering centers for SAR ATR," IEEE Trans. on Image Processing, Vol. 6, No. 1, 79-91, 1997.
doi:10.1109/83.552098 Google Scholar
9. Liao, X.-J., P. Runkle, and L. Carin, "Identification of ground targets from sequential high-range-resolution radar signatures," IEEE Trans. on Aerospace and Electronic Systems, Vol. 38, No. 4, 1230-1242, 2002.
doi:10.1109/TAES.2002.1145746 Google Scholar
10. Wong, S., "High range resolution profiles as motion-invariant features for moving ground targets identification in SAR-based automatic target recognition," IEEE Trans. on Aerospace and Electronic Systems, Vol. 45, No. 3, 1017-1039, 2009.
doi:10.1109/TAES.2009.5259180 Google Scholar
11. Albrecht, T. W. and S. C. Gustafson, "Hidden Markov models for classifying SAR target images," Proceedings of SPIE, Algorithms for Synthetic Aperture Radar Imagery XI, Vol. 5427, Orlando, FL, USA, Apr. 2004.. Google Scholar
12. Nishimoto, M., X. Liao, and L. Carin, "Target identification from multi-aspect high range-resolution radar signatures using a hidden Markov model," IEICE Trans. Electronics, Vol. 87, 1706-1714, 2004. Google Scholar
13. Han, S.-K., H.-T. Kim, S.-H. Park, and K.-T. Kim, "Efficient radar target recognition using a combination of range profile and time-frequency analysis," Progress In Electromagnetics Research, Vol. 108, 131-140, 2010.
doi:10.2528/PIER10071601 Google Scholar
14. Kim, K. T., I. S. Choi, and H. T. Kim, "Efficient radar target classification using adaptive joint time-frequency processing," IEEE Trans. on Antennas and Propagation, Vol. 2, No. 48, 1789-1801, 2000. Google Scholar
15. Thayaparan, T., P. Suresh, S. Qian, K. Venkataramaniah, S. SivaSankaraSai, and K. Sridharan, "Micro-Doppler analysis of a rotating target in synthetic aperture radar," IET Signal Processing, Vol. 4, 245-255, 2010.
doi:10.1049/iet-spr.2009.0094 Google Scholar
16. Olshausen, B. A., "Emergence of simple-cell receptive field properties by learning a sparse code for natural images," Nature, Vol. 381, 607-609, 1996.
doi:10.1038/381607a0 Google Scholar
17. Wright, J., A.-Y. Yang, A. Ganesh, S.-S. Sastry, and Y. Ma, "Robust face recognition via sparse representation," IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 31, No. 2, 210-227, 2009.
doi:10.1109/TPAMI.2008.79 Google Scholar
18. Zhang, H., N.-M. Nasrabadi, Y. Zhang, and T.-S. Huang, "Multi-view automatic target recognition using joint sparse representation," IEEE Trans. on Aerospace and Electronic Systems, Vol. 48, No. 3, 2481-2497, 2012.
doi:10.1109/TAES.2012.6237604 Google Scholar
19. Liu, H., C. Liu, and Y. Huang, "Adaptive feature extraction using sparse coding for machinery fault diagnosis," Mechanical Systems and Signal Processing,, Vol. 25, 558-574, 2011.
doi:10.1016/j.ymssp.2010.07.019 Google Scholar
20. Murray, J. F. and K. Kreutz-Delgado, "Learning sparse overcomplete codes for images," The Journal of VLSI Signal Processing, Vol. 45, 97-110, 2006.
doi:10.1007/s11265-006-9774-5 Google Scholar
21. Wang, Y., Q. Song, T. Jin, Y. Shi, and X.-T. Huang, "Sparse time-frequency representation based feature extraction method for landmine discrimination," Progress In Electromagnetics Research, Vol. 133, 459-475, 2013.
doi:10.2528/PIER12082104 Google Scholar
22. Hoyer, P. O., "Modeling receptive fields with non-negative sparse coding," Neurocomputing, Vol. 52, 547-552, 2003.
doi:10.1016/S0925-2312(02)00782-8 Google Scholar
23. Schmidt, M. N., J. Larsen, and F. T. Hsiao, "Wind noise reduction using non-negative sparse coding," Proceedings of IEEE Workshop on Machine Learning for Signal Processing, 431-436, 2007. Google Scholar
24. Tan, C.-P., J.-Y. Koay, K.-S. Lim, H.-T. Ewe, and H.-T. Chuah, "Classification of multi-temporal SAR images for rice crops using combined entropy decomposition and support vector machine technique," Progress In Electromagnetics Research, Vol. 71, 19-39, 2007.
doi:10.2528/PIER07012903 Google Scholar
25. Zhang, Y., S.Wang, and Z. Dong, "Classification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision tree," Progress In Electromagnetics Research, Vol. 144, 171-184, 2014.
doi:10.2528/PIER13121310 Google Scholar
26. Angiulli, G., D. De Carlo, G. Amendola, E. Arnieri, and S. Costanzo, "Support vector regression machines to evaluate resonant frequency of elliptic substrate integrate waveguide resonators," Progress In Electromagnetics Research, Vol. 83, 107-118, 2008.
doi:10.2528/PIER08041803 Google Scholar
27. Ross, T. D., S. W. Worrell, V. J. Velten, J. C. Mossing, and M. L. Bryant, "Standard SAR ATR evaluation experiments using the MSTAR public release data set," Proceedings of SPIE, Algorithms for Synthetic Aperture Radar Imagery V, Vol. 3370, 566-570, 1998.
doi:10.1117/12.321859 Google Scholar
28. Guillamet, D., B. Schiele, and J. Vitria, "Analyzing non-negative matrix factorization for image classification," Proceedings of 16th International Conference on Pattern Recognition, 116-119, 2002.
doi:10.1109/ICPR.2002.1048251 Google Scholar