Vol. 50
Latest Volume
All Volumes
PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2014-05-27
Power Divider Based on Stepped-Impedance Slotline
By
Progress In Electromagnetics Research C, Vol. 50, 147-154, 2014
Abstract
A novel 180˚ out-of-phase power divider based on stepped-impedance slotline is presented in this article. This power divider employs one T-junction formed by microstrip line and slotline to obtain two out-of-phase dividing signals. Stepped-impedance slotline and lumped resistor are introduced to improve the isolation between output ports. The experimental data show that the proposed power divider has good performance on insertion loss, return losses, isolation, phase balance, as well as group delay over the wide band 5 GHz-10 GHz.
Citation
Long Xiao, Hao Peng, Tao Yang, and Jun Dong, "Power Divider Based on Stepped-Impedance Slotline," Progress In Electromagnetics Research C, Vol. 50, 147-154, 2014.
doi:10.2528/PIERC14042903
References

1. Wang, X., I. Sakagami, N. Ito, and A. Mase, "Miniaturised horst-type Wilkinson power divider with simple layout," Electron. Lett., Vol. 49, No. 6, 384-385, 2013.
doi:10.1049/el.2013.0222

2. Chiu, L., T. Y. Yum, Q. Xue, and C. H. Chan, "A wideband compact parallel-strip 180˚ Wilkinson power divider for push-pull circuitries," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 1, 49-51, 2006.
doi:10.1109/LMWC.2005.859972

3. Wei, F., L. Chen, X.-W. Shi, Q.-Y. Wu, and Q.-L. Huang, "Design of compact UWB power divider with one narrow notch-band," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2343-2352, 2010.
doi:10.1163/156939310793675637

4. Chau, W.-M., K.-W. Hsu, and W.-H. Tu, "Filter-based Wilkinson power divider," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 4, 239-241, 2014.
doi:10.1109/LMWC.2014.2299543

5. Chau, W.-M., K.-W. Hsu, and W.-H. Tu, "Wide-stopband Wilkinson power divider with bandpass response," Electron. Lett., Vol. 50, No. 1, 39-40, 2014.
doi:10.1049/el.2013.3264

6. Bialkowski, M. E. and A. M. Abbosh, "Design of a compact UWB out-of-phase power divider IEEE Microw. Wireless Compon. Lett.,", Vol. 17, No. 4, 289-291, 2007.

7. Li, Q., X.-W. Shi, F. Wei, and J.-G. Gong, "A novel planar 180˚ out-of-phase power divider for UWB application," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 1, 161-167, 2011.
doi:10.1163/156939311793898288

8. Bialkowski, M. E. and Y.-F. Wang, "Design of UWB uniplanar 180˚ hybrid employing ground slots and microstrip-slot transitions," International Conference on Microwave Radar and Wireless Communications, 14-16, 2010.

9. Cohn, S. B., "Slot line on a dielectric substrate," IEEE Trans. Microw. Theory Tech., Vol. 17, No. 10, 768-778, 1969.
doi:10.1109/TMTT.1969.1127058

10. Knorr, J. B., "Slot-line transitions," IEEE Trans. Microw. Theory Tech., Vol. 22, No. 5, 1974.
doi:10.1109/TMTT.1974.1128278

11. Schuppert, B., "Microstrip/slotline transitions: Modeling and experimental investigation," IEEE Trans. Microw. Theory Tech., Vol. 36, No. 8, 1988.

12. Zinieris, M. M., R. Sloan, and L. E. Davis, "A broadband microstrip-to-slot-line transition," Microw. Opt. Tech. Lett., Vol. 18, No. 5, 1998.
doi:10.1002/(SICI)1098-2760(19980805)18:5<339::AID-MOP9>3.0.CO;2-9

13. U-yen, K. and E. J. Wollack, "Slotline stepped circular rings for low-loss microstrip-to-slotline transitions," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 2, 2007.
doi:10.1109/LMWC.2006.890328

14. Bialkowski, M. E., A. M. Abbosh, and N. Seman, "Compact microwave six-port vector voltmeters for ultra-wideband applications," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 10, 2216-2223, 2007.
doi:10.1109/TMTT.2007.906539

15. Seman, N., M. E. Bialkowski, and W. C. Khor, "Ultra wideband vias and power dividers in microstrip-slot technology," Proceedings of Asia-Pacific Microwave Conference 2007, 11-14, 2007.

16. Song, K.-J. and Q. Xue, "Ultra-wideband out-of-phase power divider using multilayer microstrip-slotline coupling structure," Microw. Opt. Tech. Lett., Vol. 52, No. 7, 1591-1594, 2010.
doi:10.1002/mop.25274

17. Abbosh, A. M., "Broadband multilayer inphase power divider for C-band applications," Electron. Lett., Vol. 44, No. 2, 120-121, 2008.
doi:10.1049/el:20083013

18. Wei, F., W.-T. Li, X.-W. Shi, and Y.-Y. Wang, "Design of compact inphase power divider with one narrow notch band for UWB application," Electron. Lett., Vol. 48, No. 3, 166-168, 2012.
doi:10.1049/el.2011.3434

19. Song, K.-J. and Q. Xue, "Novel ultra-wideband (UWB) multilayer slotline power divider with bandpass response," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 1, 13-15, 2010.
doi:10.1109/LMWC.2009.2035951

20. Chen, J.-X., C. H. K. Chin, K. W. Lau, and Q. Xue, "180˚ out-of-phase power divider based on double-sided parallel striplines," Electron. Lett., Vol. 42, No. 21, 1229-1230, 2006.
doi:10.1049/el:20061767

21. Yang, T., J.-X. Chen, and Q. Xue, "Three-way out-of-phase power divider," Electron. Lett., Vol. 44, No. 7, 482-483, 2008.
doi:10.1049/el:20080258

22. Lee, C.-H., C.-I. G. Hsu, and C.-J. Chen, "Band-notched balanced UWB BPF with stepped-impedance slotline multi-mode resonator," IEEE Microw. Wireless Compon. Lett., Vol. 22, No. 4, 182-184, 2012.
doi:10.1109/LMWC.2012.2188019

23. Li, Z.-P., L.-J. Zhang, T. Su, and C.-H. Liang, "A compact microstrip quadruplexer using slotline stepped impedance stub loaded resonators," Progress In Electromagnetics Research, Vol. 140, 509-522, 2013.
doi:10.2528/PIER13042105

24. Wen, P.-H., C.-I. G. Hsu, C.-H. Lee, and H.-H. Chen, "Design of balanced and balun diplexers using stepped-impedance slot-line resonators," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 6, 700-715, 2014.
doi:10.1080/09205071.2014.885398

25. Sagawa, M., M. Makimoto, and S. Yamashita, "Geometrical structures and fundamental characteristics of microwave stepped-impedance resonators," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 7, 1078-1085, 1997.
doi:10.1109/22.598444