1. Murugan, S. A. S., K. Karthikayan, N. A. Natraj, and C. R. Rathish, "A compact T-fed slotted microstrip antenna for wide band application," International Journal of Scientific & Technology Research, Vol. 2, No. 8, 291-294, 2013. Google Scholar
2. Rani, R. and D. Kumar, "Comparative study of T slot & cross slot coupled microstrip patch antenna," International Journal of Advanced Research in Computer Science and Software Engineering, Vol. 3, No. 4, 441-445, 2013. Google Scholar
3. Jaafar, H., M. T. Ali, S. Subahri, A. L. Yusof, and M. K. M. Salleh, "Improving gain performance by using air substrate at 5.8 GHz," International Conference on Computer and Communication Engineering, 95-98, 2012. Google Scholar
4. Sharma, A., V. K. Dwivedi, and G. Singh, "THz rectangular microstrip antenna design using photonic crystal as Substrate," PIERS Proceedings, 161-165, Cambridge, USA, Jul. 2-6, 2008. Google Scholar
5. Jackson, D. R., J. T. Williams, A. K. Bhattacharyya, R. L. Smith, S. J. Buchheit, and S. A. Long, "Microstrip patch designs that do not excite surface waves," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 8, 1026-1037, 1993.
doi:10.1109/8.244643 Google Scholar
6. Papapolymerou, I., R. F. Drayton, and L. P. B. Katehi, "Micromachined patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 2, 275-283, 1998.
doi:10.1109/8.660973 Google Scholar
7. Kim, J.-G., H. S. Lee, H.-S. Lee, J.-B. Yoon, and S. Hong, "60-GHz CPW-fed post-supported patch antenna using micromachining technology," IEEE Microwave and Wireless Components Letters, Vol. 15, 635-637, 2005. Google Scholar
8. Tzeng, Y.-B., C.-W. Su, and C.-H. Lee, "Study of broadband CP patch antenna with its ground plane having an elevated portion," Asia Pacific Microwave Conference, Vol. 4, 2005. Google Scholar
9. Raghava, N. S., A. De, N. Kataria, and S. Chatterjee, "Stacked patch antenna with cross slot electronic band gap structure," International Journal of Information and Computation Technology, Vol. 3, No. 5, 1-4, 2013. Google Scholar
10. Yeap, S. B. and Z. N. Chen, "Microstrip patch antennas with enhanced gain by partial substrate removal," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 9, 2811-2816, 2010.
doi:10.1109/TAP.2010.2052572 Google Scholar
11. Borah, K. and N. S. Bhattacharyya, "Magnetodielectric composite with NiFe2O4 inclusions as substrates for microstrip antennas," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 19, No. 5, 1825-1832, 2012.
doi:10.1109/TDEI.2012.6311533 Google Scholar
12. Kim, Y., G.-Y. Lee, and S. Nam, "Efficiency enhancement of microstrip antenna by elevating radiating edges of patch," Electronics Letters, Vol. 39, No. 19, 1363-1364, 2003.
doi:10.1049/el:20030899 Google Scholar
13. Hu, F. G., J. Song, and T. Kamgaing, "Modelling of multilayered media using effective medium theory," IEEE 19th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), 225-228, 2010.
doi:10.1109/EPEPS.2010.5642584 Google Scholar
14. Edwards, T. C., Foundations of Microstrip Circuit Design, John Wiley & Sons, UK, 1981.
15. Hu, F. G., J. Song, and T. Kamgaing, "Modelling of multilayered media using effective medium theory," IEEE 19th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), 225-228, 2010.
doi:10.1109/EPEPS.2010.5642584 Google Scholar