1. Choi, S. J., K. Djordjev, and J. Dapkus, "Microdisk lasers vertically coupled to output waveguides," IEEE Phot. Technol. Lett., Vol. 15, 1330-1332, 2003.
doi:10.1109/LPT.2003.817990 Google Scholar
2. Fujita, M., A. Sakai, and T. Baba, "Ultra-small and ultra-low threshold microdisk laser — Design, fabrication, lasing characteristics and spontaneous emission factor," IEEE J. Sel. Top. Quantum Electron., Vol. 5, 673-681, 1999.
doi:10.1109/2944.788434 Google Scholar
3. Seassal, C., C. Monat, J. Mouette, E. Touraille, B. Ben Bhakir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitc, "InP bonded membrane photonic components and circuits: Towards 2.5 dimensional micro-nano-photonics," IEEE J. Sel. Top. in Quantum Electron., Vol. 11, 395-407, 2005.
doi:10.1109/JSTQE.2005.845621 Google Scholar
4. Levi, A. F. J., R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan, "Directional light coupling from microdisk lasers," Appl. Phys. Lett., Vol. 62, 561-563, 1993.
doi:10.1063/1.108911 Google Scholar
5. Park, H. G., J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, and Y. H. Lee, "Characteristics of modified single-defect two-dimensional photonic crystal lasers," IEEE J. Quantum Electron., Vol. 38, 1353-1365, 2002.
doi:10.1109/JQE.2002.802951 Google Scholar
6. Loncar, M. and A. Scherer, "Photonic crystal laser sources for chemical detection," Appl. Phys. Lett., Vol. 82, 4648-4650, 2003.
doi:10.1063/1.1586781 Google Scholar
7. Hattori, H. T., I. McKerracher, H. H. Tan, C. Jagadish, and R. M. De La Rue, "In-plane coupling of light from InP based photonic crystal band-edge lasers into single-mode waveguides," IEEE J. Quantum Electron., Vol. 43, 279-286, 2007.
doi:10.1109/JQE.2006.890402 Google Scholar
8. Yokohama, M. and S. Noda, "Finite-difference time-domain simulation of two-dimensional photonic crystal surface emitting laser," Opt. Express, Vol. 13, 2869-2880, 2005.
doi:10.1364/OPEX.13.002869 Google Scholar
9. Hattori, H. T., X. Letartre, C. Seassal, P. Rojo-Romeo, J. L. Leclercq, and P. Viktorovitch, "Analysis of hybrid photonic crystal vertical cavity surface emitting lasers," Opt. Express, Vol. 11, 1799-1808, 2003.
doi:10.1364/OE.11.001799 Google Scholar
10. Hill, M. T., M. Marell, E. S. P. Leong, B. Smallbrugge, Y. Zhu, M. Sun, P. J. Van Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Notzel, C. Z. Ning, and M. K. Smit, "Lasing in metalinsulator-metal sub-wavelength plasmonic waveguides," Opt. Express, Vol. 17, 11107-11112, 2009.
doi:10.1364/OE.17.011107 Google Scholar
11. Stockman, M. I., "Spaser action, loss compensation and stability in plasmonic systems with gain," Phys. Rev. Lett., Vol. 106, 156802, 2011.
doi:10.1103/PhysRevLett.106.156802 Google Scholar
12. Cubukcu, E., N. Yu, E. J. Smythe, L. Diehl, K. B. Crozier, and F. Capasso, "Plasmonic laser antennas and related devices," IEEE J. Sel. Top. in Quantum Electron., Vol. 14, 1448-1461, 2008.
doi:10.1109/JSTQE.2007.912747 Google Scholar
13. Hattori, H. T., Z. Li, D. Liu, I. D. Rukhlenko, and M. Premaratne, "Coupling of light from microdisk lasers into plasmonic nano-antennas," Opt. Express, Vol. 17, 20878-20884, 2009.
doi:10.1364/OE.17.020878 Google Scholar
14. Ball, G. A. and W. M. Morey, "Continuously tunable single-mode erbium fiber laser," Opt. Letters, Vol. 19, 1979-1981, 1994.
doi:10.1364/OL.19.001979 Google Scholar
15. Zyskind, J. L., V. Mizrahi, D. J. Di Giovanni, and J. W. SUlhoff, "Short single frequency erbiumdoped fibre laser," Electron. Lett., Vol. 28, 1385-1387, 1992.
doi:10.1049/el:19920881 Google Scholar
16. Agrawal, G. P. and S. Radic, "Phase-shifted fiber Bragg grating and their applications for wavelength demultiplexing," IEEE Phot., Technol. Lett., Vol. 6, 995-997, 1994.
doi:10.1109/68.313074 Google Scholar
17. Cazo, R. M., O. Lisboa, H. T. Hattori, V. M. Schneider, C. L. Barbosa, R. C. Rabelo, and J. L. S. Ferreira, "Experimental analysis of reflected modes in a multimode strained grating," Microw. and Opt. Technol. Lett., Vol. 28, 4-8, 2001.
doi:10.1002/1098-2760(20010105)28:1<4::AID-MOP2>3.0.CO;2-1 Google Scholar
18. Oullette, F., "All-fiber filter for efficient dispersion compensation," Opt. Letters, Vol. 16, 303-305, 1991.
doi:10.1364/OL.16.000303 Google Scholar
19. Hattori, H. T., V. M. Schneider, and O. Lisboa, "Cantor set fiber Bragg grating," J. of Opt. Soc. America A, Vol. 17, 1583-1589, 2000.
doi:10.1364/JOSAA.17.001583 Google Scholar
20. Barcelos, S., M. N. Zervas, and . I. Laming, "Characteristics of chirped fiber gratings for dispersion compensation," Opt. Fiber Technol., Vol. 1, 213-215, 1996.
doi:10.1006/ofte.1996.0026 Google Scholar
21. Archambault, J. L., P. S. Russell, S. Barcelos, P. Hua, and L. Reekie, "Grating frustrated coupler: A novel channel-dropping filter in single-mode optical fiber," Opt. Letters, Vol. 19, 180-182, 1994.
doi:10.1364/OL.19.000180 Google Scholar
22. Tailaert, D., W. Bogaerts, P. Bienstman, T. F. Krausss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, "An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers," IEEE J. Quantum Electron., Vol. 38, 949-955, 2002.
doi:10.1109/JQE.2002.1017613 Google Scholar
23. Heifetz, A., S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, "Photonic nanojets," J. Comput. Theor. Nanosci., Vol. 6, 1979-1992, 2009.
doi:10.1166/jctn.2009.1254 Google Scholar
24. Ferrand, P., J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, "Direct imaging of photonic nanojets," Opt. Express, Vol. 16, 6930-6940, 2008.
doi:10.1364/OE.16.006930 Google Scholar
25. Heifetz, A., K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, "Experimental confirmation of backscattering enhancement induced by a photonic jet," Appl. Phys. Lett., Vol. 89, 221118, 2006.
doi:10.1063/1.2398907 Google Scholar
26. Fletcher, D. A., K. E. Goodson, and G. S. Kino, "Focusing in microlenses close to a wavelength in diameter," Opt. Letters, Vol. 26, 399-401, 2001.
doi:10.1364/OL.26.000399 Google Scholar
27. Chen, Z., A. Taflove, and V. Backman, "Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique," Opt. Express, Vol. 12, 1214-1220, 2004.
doi:10.1364/OPEX.12.001214 Google Scholar
28. Li, X., Z. Chen, A. Taflove, and V. Backman, "Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets," Opt. Express, Vol. 13, 526-533, 2005.
doi:10.1364/OPEX.13.000526 Google Scholar
29. Kim, M. S., T. Scharf, S. Muhlig, C. Rockstuhl, and H. P. Herzig, "Engineering photonic nanojets," Opt. Express, Vol. 19, 10206-10220, 2011.
doi:10.1364/OE.19.010206 Google Scholar
30. Yi, K. J., H. Wang, Y. F. Lu, and Z. Y. Yang, "Enhanced Raman scattering by self-assembled silica spherical microparticles," J. of Appl. Phys., Vol. 101, 063528, 2007.
doi:10.1063/1.2450671 Google Scholar
31. Le Ru, E. C., E. Blackie, M. Meyer, and P. G. Etchegoin, "Surface enhanced Raman scattering enhancement factors: A comprehensive study," J. Phys. Chem. C, Vol. 111, 13794-13803, 2007.
doi:10.1021/jp0687908 Google Scholar
32. Banaee, M. G. and K. B. Crozier, "Gold nanorings as substrate for surface-enhanced Raman scattering," Opt. Letters, Vol. 35, 760-762, 2010.
doi:10.1364/OL.35.000760 Google Scholar
33. Li, Z., H. T. Hattori, P. Parkinson, J. Tian, L. Fu, H. H. Tan, and C. Jagadish, "A plasmonic staircase nano-antenna device with strong electric field enhancement for surface enhanced Raman scattering (SERS) applications," J. Phys. D: Appl. Phys., Vol. 45, 305102, 2012.
doi:10.1088/0022-3727/45/30/305102 Google Scholar
34. Ashok, P. C., G. P. Singh, K. M. Tan, and K. Dholakia, "Fiber probe based microfluidic raman spectroscopy," Opt. Express, Vol. 18, 7642-7649, 2010.
doi:10.1364/OE.18.007642 Google Scholar
35. Ju, D., H. Pei, Y. Jiang, and X. Sun, "Controllable and enhanced nanojet effects excited by surface plasmon polariton," Appl. Phys. Lett., Vol. 102, 171109, 2013.
doi:10.1063/1.4802958 Google Scholar
36. Fullwave 6.0 RSOFT Design Group, 1999, .
doi:10.1063/1.4802958 Google Scholar
37. Udagedara, I., M. Premaratne, I. D. Rukhlenko, H. T. Hattori, and G. P. Agrawal, "Unified PML for FDTD modelling of dispersive optical materials," Opt. Express, Vol. 17, 21179-21190, 2009.
doi:10.1364/OE.17.021179 Google Scholar
38. Maier, S. A., Plasmonics: Fundamentals and Applications, Springer, New York, 2007.
39. Rakic, A. D., A. B. Djurisic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Optics, Vol. 37, 5271-5283, 1998.
doi:10.1364/AO.37.005271 Google Scholar