Vol. 47
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-08-08
Low Profile Dual-Polarized Circular Patch Antenna with an AMC Reflector
By
Progress In Electromagnetics Research Letters, Vol. 47, 131-137, 2014
Abstract
A coax-feed low profile dual-polarized circular patch antenna with ±45˚ polarization is presented. The antenna consists of a dual-polarized circular patch excited by two coax-lines and an AMC reflector. By using the AMC reflector as the ground plane of the patch antenna, the profile of the antenna is reduced to λ/8 of the operation frequency, which is much lower than that of the conventional dual-polarized patch antenna. The experimental results show that the proposed design obtains a wide bandwidth (2.12-2.77 GHz) and a high isolation (>35 dB) over the entire band. In addition, the front-back radio of the antenna is improved significantly by using the AMC reflector. The wide bandwidth, low-profile and high front-to-back ratio make the antenna a good candidate as a base station antenna for WLAN, WiMAX and LTE applications.
Citation
Jian Ren, Bo Wang, and Ying-Zeng Yin, "Low Profile Dual-Polarized Circular Patch Antenna with an AMC Reflector," Progress In Electromagnetics Research Letters, Vol. 47, 131-137, 2014.
doi:10.2528/PIERL14062604
References

1. Wong, K. L., H. C. Tung, and T. W. Chiou, "Broadband dual-polarized aperture-coupled patch antennas with modified H-shaped coupling slots," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 2, 188-191, 2002.
doi:10.1109/8.997993

2. Gao, S. C., L. W. Li, M. S. Leong, and T. S. Yeo, "Dual-polarized slot-coupled planar antenna with wide bandwidth," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 3, 441-448, 2003.
doi:10.1109/TAP.2003.809842

3. Chieh, J.-C. S., B. Pham, A.-V. Pham, G. Kannell, and A. Pidwerbetsky, "Millimeter-wave dual-polarized high-isolation antennas and arrays on organic substrates," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 12, 5948-5957, 2013.
doi:10.1109/TAP.2013.2280872

4. Zhang, K., F. Zhu, and S. Gao, "Differential-fed ultra-wideband slot-loaded patch antenna with dual orthogonal polarisation," Electronics Letters, Vol. 49, No. 25, 1591-1593, 2013.
doi:10.1049/el.2013.2607

5. Zhu, F., S. Gao, A. T. S. Ho, R. A. Abd-Alhameed, C. H. See, T.W. C. Brown, J. Li, G. Wei, and J. Xu, "Ultra-wideband dual-polarized patch antenna with four capacitively coupled feeds," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 5, 2440-2449, 2014.
doi:10.1109/TAP.2014.2308524

6. Li, Y., Z. Zhang, C. Deng, Z. Feng, and M. F. Iskander, "2-D planar scalable dual-polarized seriesfed slot antenna array using single substrate," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 4, 2280-2283, 2014.
doi:10.1109/TAP.2014.2300178

7. Li, B., Y.-Z. Yin, W. Hu, Y. Ding, and Y. Zhao, "Wideband dual-polarized patch antenna with low cross polarization and high isolation," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 427-430, 2012.

8. Xie, J.-J., X.-S. Ren, Y.-Z. Yin, and J. Ren, "Dual-polarized patch antenna with wide bandwidth using electromagnetic feeds," Electronics Letters, Vol. 48, No. 22, 1385-1386, 2012.
doi:10.1049/el.2012.2216

9. Xie, J. J., Y. Z. Yin, and J. Ren, "A wideband dual-polarized patch antenna with electric probe and magnetic loop feeds," Progress In Electromagnetics Research, Vol. 132, 499-515, 2012.
doi:10.2528/PIER12083107

10. Li, B., W. Hu, J. Ren, and Y.-Z. Yin, "Low-profile dual-polarized patch antenna with HIS reflector for base station application," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 8, 956-962, 2014.
doi:10.1080/09205071.2014.898593

11. Foroozesh, A. and L. Shafai, "Investigation into the application of artificial magnetic conductors to bandwidth broadening, gain enhancement and beam shaping of low profile and conventional monopole antennas," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 1, 4-20, 2011.
doi:10.1109/TAP.2010.2090458

12. Yang, F. and Y. Rahmat-Samii, "Reflection phase characteristics of the EBG ground plane for low profile wire antennas," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2691-2703, 2003.
doi:10.1109/TAP.2003.817559

13. Nakano, H., K. Hitosugi, N. Tatsuzawa, D. Togashi, H. Mimaki, and J. Yamauchi, "Effects on the radiation characteristics of using a corrugated reflector with a helical antenna and an electromagnetic band-gap reflector with a spiral antenna," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 191-199, 2005.
doi:10.1109/TAP.2004.840755

14. Agarwal, K., Nasimuddin, and A. Alphones, "Wideband circularly polarized AMC reflector backed aperture antenna," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 3, 1456-1461, 2013.
doi:10.1109/TAP.2012.2227446

15. Feresidis, A. P., G. Goussetis, S. Wang, and J. C. Vardaxoglou, "Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 209-215, 2005.
doi:10.1109/TAP.2004.840528

16. Sohn, J. R., K. Y. Kim, and H.-S. Tae, "Comparative study on various artificial magnetic conductors for low-profile antenna," Progress In Electromagnetics Research, Vol. 61, 27-37, 2006.
doi:10.2528/PIER06011701

17. Goussetis, G., A. Feresidis, and J. C. Vardaxoglou, "Tailoring the AMC and EBG characteristics of periodic metallic arrays printed on grounded dielectric substrate," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 1, 82-89, 2006.
doi:10.1109/TAP.2005.861575

18. Joubert, J., J. C. Vardaxoglou, W. G. Whittow, and J. W. Odendaal, "CPW-fed cavity-backed slot radiator loaded with an AMC reflector," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 735-742, 2012.
doi:10.1109/TAP.2011.2173152