1. Lai, C. H., T. Y. Han, and T. R. Chen, "Broadband aperture-coupled microstrip antennas with low cross polarization and back radiation," Progress In Electromagnetics Research Letters, Vol. 5, No. 187, 2008. Google Scholar
2. Nasimuddin, Z. and N. Chen, "Wideband microstrip antennas with sandwich substrate," IET Microwaves, Antennas & Propagation, Vol. 2, 538-546, 2008.
doi:10.1049/iet-map:20070284 Google Scholar
3. Ali, M. T., N. Nordin, N. Ya'acob, and M. N. Md. Tan, "Design of wideband microstrip patch antenna using L probe fed at 2.6 GHz," International Conference on Communication and Computer Engineering, 961-965, IEEE, Kuala Lampur, July 3-5, 2012. Google Scholar
4. Mandal, K., S. Sarkar, and P. P. Sarkar, "Bandwidth enhancement of microstrip antenna by staggering effect," Microwave and Optical Technology Letters, Vol. 53, 2446-2447, 2011.
doi:10.1002/mop.26299 Google Scholar
5. Yang, S. L. S., A. A. Kishk, and K. F. Lee, "Frequency reconfigurable U slot microstrip patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 127-129, 2008.
doi:10.1109/LAWP.2008.921330 Google Scholar
6. Bao, X. L. and M. J. Ammann, "Small patch/slot antenna with 53% input impedance bandwidth," Electronics Letters, Vol. 43, 146-147, 2007.
doi:10.1049/el:20073279 Google Scholar
7. Kiran, U., R. M. Vani, R. M. Yadahalli, P. V. Hunagund, and S. F. Farida, "Microstrip line feed rectangular microstrip antenna with open end meandering slots in the ground plane for compact broadband operation," Microwave and Optical Technology Letters, Vol. 49, 824-827, 2007.
doi:10.1002/mop.22267 Google Scholar
8. Mukherjee, B. and A. Raj, "Investigation of a hemispherical dielectric resonator antenna for enhanced bandwidth of operation," International Journal of Applied Electromagnetics and Mechanics, Vol. 43, 457-466, 2013. Google Scholar
9. Iddi, H. U., M. R. Kamarudin, T. A. Rahman, A. Y. Abdulrahman, M. Khalily, and M. F. Jamlos, "Triple band CPW-fed planar monopole antenna for WLAN/WiMAX applications," Microwave and Optical Technology Letters, Vol. 55, 2209-2214, 2013.
doi:10.1002/mop.27759 Google Scholar
10. Liu, W. X., Y. Z. Yin, and W. L. Xu, "Compact self similar triple band antenna for WLAN/WiMAX applications," Microwave and Optical Technology Letters, Vol. 54, 1084-1087, 2012.
doi:10.1002/mop.26732 Google Scholar
11. Wang, Y. F., B. H. Sun, K. He, R. H. Li, and Y. J. Wang, "A compact triple band antenna for wlan/wimax applications," Microwave and Optical Technology Letters, Vol. 53, 2371-2375, 2011.
doi:10.1002/mop.26254 Google Scholar
12. Koo, T .W., D. Kim, J. I. Ryu, J. C. Kim, and J. G. Yook, "A coupled dual U shaped coupled monopole antenna for wimax triple band application," Microwave and Optical Technology Letters, Vol. 53, 745-748, 2011.
doi:10.1002/mop.25842 Google Scholar
13. Zhang, Q. Y. and Q. X. Chu, "Triple band dual rectangular ring printed monopole antenna for WLAN/WiMAX applications," Microwave and Optical Technology Letters, Vol. 51, 2845-2848, 2009.
doi:10.1002/mop.24773 Google Scholar
14. Xu, L., Z. Y. Xin, and J. He, "A compact triple band fork shaped antenna for WLAN/WiMAX applications," Progress In Electromagnetics Research Letters, Vol. 40, 61-69, 2013.
doi:10.2528/PIERL13040210 Google Scholar
15. Liu, W. C., C. M. Wu, and Y. Dai, "Design of triple-frequency microstrip-fed monopole antenna using defected ground structure," IEEE Transactions on Antennas and Propagation, Vol. 59, 2457-2463, 2011.
doi:10.1109/TAP.2011.2152315 Google Scholar
16. Pei, J., A. G. Wang, S. Gao, and W. Leng, "Miniaturized triple-band antenna with a defected ground plane for WLAN/WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 298-301, 2011. Google Scholar
17. Wang, T., Y. Z. Yin, J. Yang, Y. L. Zhang, and J.-J. Xie, "Compact triple-band antenna using defected ground structure for WLAN/WiMAX applications," Progress In Electromagnetics Research Letters, Vol. 35, 155-164, 2012. Google Scholar
18. Zeland Software Inc. IE3D: MoM-based EM simulator.