Vol. 60
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2014-08-04
Design and Analysis of a Compact Triple Band Slotted Microstrip Antenna with Modified Ground Plane for Wireless Communication Applications
By
Progress In Electromagnetics Research B, Vol. 60, 215-225, 2014
Abstract
A novel single layer, coaxial probe feed compact triple band slotted microstrip patch antenna with modified ground plane for wireless application has been designed and analyzed. The presented antenna, occupying a compact size of 24×22×1.6 mm3, embodies a rectangular slotted patch and a rectangular ground plane modified with open ended step graded slots. The step graded slots are introduced on the ground plane to reduce the size of the antenna by reducing the resonant frequency and also to improve the operating bandwidth of the proposed antenna. The size of the antenna has been reduced by 74% by introducing slots on the ground plane. The measured bandwidths for -10 dB reflection coefficient are 360 MHz (1.72-2.08 GHz) at lower band, 300 MHz (3.36-3.66 GHz) at middle band and 3650 MHz (4.85-8.5 GHz) at upper band which cover the bandwidth requirements of 1.92 GHz PCS, 1.9 GHz PHS, 3.5/5.5 GHz WiMAX, 5.2/5.8 GHz WLAN, 5.2 GHz HisWaNa, 5.5 GHz Wi-Fi 802.11n and 5 GHz HiPERLAN wireless application bands.
Citation
Sudipta Das, Partha Pratim Sarkar, and Santosh Kumar Chowdhury, "Design and Analysis of a Compact Triple Band Slotted Microstrip Antenna with Modified Ground Plane for Wireless Communication Applications," Progress In Electromagnetics Research B, Vol. 60, 215-225, 2014.
doi:10.2528/PIERB14070108
References

1. Lai, C. H., T. Y. Han, and T. R. Chen, "Broadband aperture-coupled microstrip antennas with low cross polarization and back radiation," Progress In Electromagnetics Research Letters, Vol. 5, No. 187, 2008.

2. Nasimuddin, Z. and N. Chen, "Wideband microstrip antennas with sandwich substrate," IET Microwaves, Antennas & Propagation, Vol. 2, 538-546, 2008.
doi:10.1049/iet-map:20070284

3. Ali, M. T., N. Nordin, N. Ya'acob, and M. N. Md. Tan, "Design of wideband microstrip patch antenna using L probe fed at 2.6 GHz," International Conference on Communication and Computer Engineering, 961-965, IEEE, Kuala Lampur, July 3-5, 2012.

4. Mandal, K., S. Sarkar, and P. P. Sarkar, "Bandwidth enhancement of microstrip antenna by staggering effect," Microwave and Optical Technology Letters, Vol. 53, 2446-2447, 2011.
doi:10.1002/mop.26299

5. Yang, S. L. S., A. A. Kishk, and K. F. Lee, "Frequency reconfigurable U slot microstrip patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 127-129, 2008.
doi:10.1109/LAWP.2008.921330

6. Bao, X. L. and M. J. Ammann, "Small patch/slot antenna with 53% input impedance bandwidth," Electronics Letters, Vol. 43, 146-147, 2007.
doi:10.1049/el:20073279

7. Kiran, U., R. M. Vani, R. M. Yadahalli, P. V. Hunagund, and S. F. Farida, "Microstrip line feed rectangular microstrip antenna with open end meandering slots in the ground plane for compact broadband operation," Microwave and Optical Technology Letters, Vol. 49, 824-827, 2007.
doi:10.1002/mop.22267

8. Mukherjee, B. and A. Raj, "Investigation of a hemispherical dielectric resonator antenna for enhanced bandwidth of operation," International Journal of Applied Electromagnetics and Mechanics, Vol. 43, 457-466, 2013.

9. Iddi, H. U., M. R. Kamarudin, T. A. Rahman, A. Y. Abdulrahman, M. Khalily, and M. F. Jamlos, "Triple band CPW-fed planar monopole antenna for WLAN/WiMAX applications," Microwave and Optical Technology Letters, Vol. 55, 2209-2214, 2013.
doi:10.1002/mop.27759

10. Liu, W. X., Y. Z. Yin, and W. L. Xu, "Compact self similar triple band antenna for WLAN/WiMAX applications," Microwave and Optical Technology Letters, Vol. 54, 1084-1087, 2012.
doi:10.1002/mop.26732

11. Wang, Y. F., B. H. Sun, K. He, R. H. Li, and Y. J. Wang, "A compact triple band antenna for wlan/wimax applications," Microwave and Optical Technology Letters, Vol. 53, 2371-2375, 2011.
doi:10.1002/mop.26254

12. Koo, T .W., D. Kim, J. I. Ryu, J. C. Kim, and J. G. Yook, "A coupled dual U shaped coupled monopole antenna for wimax triple band application," Microwave and Optical Technology Letters, Vol. 53, 745-748, 2011.
doi:10.1002/mop.25842

13. Zhang, Q. Y. and Q. X. Chu, "Triple band dual rectangular ring printed monopole antenna for WLAN/WiMAX applications," Microwave and Optical Technology Letters, Vol. 51, 2845-2848, 2009.
doi:10.1002/mop.24773

14. Xu, L., Z. Y. Xin, and J. He, "A compact triple band fork shaped antenna for WLAN/WiMAX applications," Progress In Electromagnetics Research Letters, Vol. 40, 61-69, 2013.
doi:10.2528/PIERL13040210

15. Liu, W. C., C. M. Wu, and Y. Dai, "Design of triple-frequency microstrip-fed monopole antenna using defected ground structure," IEEE Transactions on Antennas and Propagation, Vol. 59, 2457-2463, 2011.
doi:10.1109/TAP.2011.2152315

16. Pei, J., A. G. Wang, S. Gao, and W. Leng, "Miniaturized triple-band antenna with a defected ground plane for WLAN/WiMAX applications," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 298-301, 2011.

17. Wang, T., Y. Z. Yin, J. Yang, Y. L. Zhang, and J.-J. Xie, "Compact triple-band antenna using defected ground structure for WLAN/WiMAX applications," Progress In Electromagnetics Research Letters, Vol. 35, 155-164, 2012.

18. Zeland Software Inc. IE3D: MoM-based EM simulator.