Vol. 52
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2014-08-04
Low-Pass Equivalent Behavioral Modeling of RF Power Amplifiers Using Two Independent Real-Valued Feed-Forward Neural Networks
By
Progress In Electromagnetics Research C, Vol. 52, 125-133, 2014
Abstract
Feed-forward artificial neural networks (ANNs) can provide the adequate model required for the linearization of power amplifiers (PAs) used in wireless communication systems. A common characteristic of previously available ANN-based models for linearization purposes is the use of a single real-valued ANN having two outputs. The contribution of this work is to report the benefits of performing such behavioral modeling based on two independent real-valued ANNs, where each network has a unique output. The proposed ANN-based model is applied to the behavioral modeling of a GaN HEMT class AB PA, and its accuracy is compared to previous approaches in two different scenarios. First, in case of similar number of network parameters, it is observed that the proposed ANN-based model can reduce the normalized mean-square error (NMSE) by up to 1.3 dB. Second, in a situation of comparable modeling accuracy (NMSE = -40 dB), it is observed that the proposed ANN-based model can reduce the number of network parameters by up to 40% (from 62 to 38 real-valued parameters).
Citation
Luiza Beana Chipansky Freire Caroline De Franca Eduardo Goncalves de Lima , "Low-Pass Equivalent Behavioral Modeling of RF Power Amplifiers Using Two Independent Real-Valued Feed-Forward Neural Networks," Progress In Electromagnetics Research C, Vol. 52, 125-133, 2014.
doi:10.2528/PIERC14070207
http://www.jpier.org/PIERC/pier.php?paper=14070207
References

1. Cripps, S., RF Power Amplifiers for Wireless Communications, Artech House, Norwood, 2006.

2. Raab, H., P. Asbeck, S. Cripps, P. B. Kenington, Z. B. Popovic, N. Pothecary, J. F. Sevic, and N. O. Sokal, "Power amplifiers and transmitters for RF and microwave," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 3, 814-826, 2002.
doi:10.1109/22.989965

3. Raychaudhuri, D. and N. B. Mandayam, "Frontiers of wireless and mobile communications," Proc. IEEE, Vol. 100, No. 4, 824-840, 2012.
doi:10.1109/JPROC.2011.2182095

4. Piazzon, L., R. Giofre, P. Colantonio, and F. Giannini, "A method for designing broadband Doherty power amplifiers," Progress In Electromagnetics Research, Vol. 145, 319-331, 2014.
doi:10.2528/PIER14011301

5. Kenington, P. B., High Linearity RF Amplifier Design, Artech House, Norwood, 2000.

6. Pedro, J. C. and S. A. Maas, "A comparative overview of microwave and wireless power-amplifier behavioral modeling approaches," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 4, 1150-1163, 2005.
doi:10.1109/TMTT.2005.845723

7. Schetzen, M., "Nonlinear system modeling based on the Wiener theory," Proc. IEEE, Vol. 69, No. 12, 1557-1573, 1981.
doi:10.1109/PROC.1981.12201

8. Wang, H., H. Ma, and J. Chen, "A multi-status behavioral model for the elimination of electrothermal memory effect in DPD system," Progress In Electromagnetics Research C, Vol. 47, 103-109, 2014.
doi:10.2528/PIERC13112803

9. Sun, G., C. Yu, Y. Liu, S. Li, and J. Li, "An accurate complexity-reduced simplified volterra series for RF power amplifiers," Progress In Electromagnetics Research C, Vol. 47, 157-166, 2014.
doi:10.2528/PIERC13121201

10. Haykin, S., Neural Networks: A Comprehensive Foundation, Prentice Hall, New Jersey, 1999.

11. Liu, T., S. Boumaiza, and F. M. Ghannouchi, "Dynamic behavioral modeling of 3G power amplifiers using real-valued time-delay neural networks," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 3, 1025-1033, 2004.
doi:10.1109/TMTT.2004.823583

12. Yuan, X.-H. and Q. Feng, "Behavioral modeling of RF power amplifiers with memory effects using orthonormal Hermite polynomial basis neural network," Progress In Electromagnetics Research C, Vol. 34, 239-251, 2013.
doi:10.2528/PIERC12091903

13. Fu, K., C. L. Law, and T. T. Thein, "Novel neural network model of power amplifier plus IQ imbalances," Progress In Electromagnetics Research B, Vol. 46, 177-192, 2013.
doi:10.2528/PIERB12082404

14. Isaksson, M., D. Wisell, and D. Ronnow, "Wide-band dynamic modeling of power amplifiers using radial-basis function neural networks," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 11, 3422-3428, 2005.
doi:10.1109/TMTT.2005.855742

15. Lima, E. G., T. R. Cunha, and J. C. Pedro, "A physically meaningful neural network behavioral model for wireless transmitters exhibiting PM-AM/PM-PM distortions," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 12, 3512-3521, 2011.
doi:10.1109/TMTT.2011.2171709

16. Jeruchim, M. C., P. Balaban, and K. S. Shanmugan, Simulation of Communication Systems --- Modeling, Methodology, and Techniques, Kluwer Academic/Plenum Publishers, New York, 2000.

17. Vuolevi, J. H. K., T. Rahkonen, and J. P. A. Manninen, "Measurement technique for characterizing memory effects in RF power amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 8, 1383-1389, 2001.
doi:10.1109/22.939917

18. Bosch, W. and G. Gatti, "Measurement and simulation of memory effects in predistortion linearizers," IEEE Trans. Microw. Theory Tech., Vol. 37, No. 12, 1885-1890, 1989.
doi:10.1109/22.44098

19. Benedetto, S., E. Biglieri, and R. Daffara, "Modeling and performance evaluation of nonlinear satellite links --- A Volterra series approach," IEEE Trans. Aerosp. Electron. Syst., Vol. 15, No. 4, 494-507, 1979.
doi:10.1109/TAES.1979.308734

20. Chen, S., C. F. N. Cowan, and P. M. Grant, "Orthogonal least squares learning algorithm for radial basis function networks," IEEE Trans. Neural Netw., Vol. 2, No. 2, 302-309, 1991.
doi:10.1109/72.80341

21. Isaksson, M., D. Wisell, and D. Ronnow, "A comparative analysis of behavioral models for RF power amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 1, 348-359, 2006.
doi:10.1109/TMTT.2005.860500