Vol. 50
Latest Volume
All Volumes
PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2014-11-23
Compact and High Selectivity Tri-Band Bandpass Filter Using Multipath-Embedded Resonators
By
Progress In Electromagnetics Research Letters, Vol. 50, 35-40, 2014
Abstract
In this paper, a novel compact tri-band bandpass filter (BPF) with compact circuit size and high passband selectivity has been presented and implemented using multipath-embedded resonator (MER). This filter includes two multipath-embedded stepped impedance resonators (SIRs), connected with stub-coupling at the symmetric plane. By tuning admittance ratio and length ratio of the multipath-embedded resonator, it can be designed at 1.84, 2.45, 3.05 GHz. Through internal edge-coupling and extemal zero-degree feed lines, a tri-band BPF can be achieved with compact circuit size, high passband selectivity and low insertion loss. The measured results validate the full-wave EM simulated results with good agreement.
Citation
Shuai Yang, Bian Wu, Cheng Zhu, Yi Wang, and Chang-Hong Liang, "Compact and High Selectivity Tri-Band Bandpass Filter Using Multipath-Embedded Resonators," Progress In Electromagnetics Research Letters, Vol. 50, 35-40, 2014.
doi:10.2528/PIERL14102108
References

1. Lin, Y.-S., C.-C. Liu, K.-M. Li, and C.-H. Chen, "Design of an LTCC tri-band transceiver module for GPRS mobile applications," IEEE Trans. Microw. Thoery and Tech., Vol. 52, No. 12, 2718-2724, Dec. 2004.
doi:10.1109/TMTT.2004.838292

2. Chen, W.-Y., S.-J. Chang, M.-H. Weng, Y.-H. Su, and H. Kuan, "Simple method to design a tri-band bandpass filter using asymmetric SIRs for GSM, Wimax and WLAN applications," Microw. Opt. Technol. Lett., Vol. 53, No. 7, 1573-1576, Jul. 2011.
doi:10.1002/mop.26037

3. Li, J., S. S. Huang, and J. Z. Zhao, "Design of a compact and high selectivity tri-band bandpass filter using asymmetric stepped-impedance resonators (SIRs)," Progress In Electromagnetics Research Letters, Vol. 44, 81-86, 2014.
doi:10.2528/PIERL13112502

4. Liu, H.-W., Y. Wang, X.-M. Wang, J.-H. Lei, and W.-Y. Xu, "Compact and High selectivity tri-band bandpass filter using multimode stepped-impedance resonator," IEEE Microwave. Wireless Compon. Lett., Vol. 23, No. 10, 536-538, Oct. 2013.
doi:10.1109/LMWC.2013.2251618

5. Chen, W.-Y., M.-H. Weng, and S.-J. Chang, "A new tri-band bandpass filter based on stub-loaded step-impedance resonator," IEEE Microwave. Wireless Compon. Lett., Vol. 22, No. 4, 179-181, Apr. 2012.
doi:10.1109/LMWC.2012.2187884

6. Lai, X., C.-H. Liang, H. Di, and B. Wu, "Design of tri-band lter based on stub loaded resonator and DGS resonator," IEEE Microwave. Wireless Compon. Lett., Vol. 20, No. 5, 265-267, May 2010.
doi:10.1109/LMWC.2010.2045584

7. Zhang, X. Y., L. Gao, Z. Y. Cai, and X. L. Zhao, "Novel tri-band bandpass filter using stub-loaded short-ended resonator," Progress In Electromagnetics Research Letters, Vol. 40, 81-92, 2013.
doi:10.2528/PIERL13040205

8. Luo, S., L. Zhu, and S. Sun, "Compact dual-mode triple-band bandpass filters using three pairs of degenerate modes in a ring resonator," IEEE Trans. Microw. Theory and Tech., Vol. 59, No. 5, 1222-1229, May 2011.
doi:10.1109/TMTT.2011.2123106

9. Chang, F.-C. and Q.-X. Chu, "Design of compact tri-band bandpass filter using assembled resonators," IEEE Trans. Microw. Theory and Tech., Vol. 57, No. 1, 165-171, Jan. 2009.
doi:10.1109/TMTT.2008.2008963

10. Peng, Y., L. Zhang, Y. Leng, and J. Guan, "A compact tri-band passband filter based on three embedded bending stub resonators," Progress In Electromagnetics Research Letters, Vol. 37, 189-197, 2013.
doi:10.2528/PIERL12111804

11. Zhang, Q., B.-Z. Wang, W.-Y. Yin, and L.-S. Wu, "Design of a miniaturized dual-band double-folded substrate integrated waveguide bandpass filter with controllable bandwidths," Progress In Electromagnetics Research, Vol. 136, 211-223, 2013.
doi:10.2528/PIER12121404

12. Zhou, C., Y.-X. Guo, L. Wang, and W. Wu, "Design of compact dual-band filter in multilayer LTCC with cross coupling," Progress In Electromagnetics Research, Vol. 135, 515-525, 2013.
doi:10.2528/PIER12102308

13. Yeo, K. S. K. and A. O. Nwajana, "A novel microstrip dual-band bandpass filter using dual-mode square patch resonators," Progress In Electromagnetics Research C, Vol. 36, 233-247, 2013.
doi:10.2528/PIERC12120312

14. Deng, K., S. Yang, S.-J. Sun, B. Wu, and X.-W. Shi, "Dual-mode dual-band bandpass filter based on square loop resonator," Progress In Electromagnetics Research C, Vol. 37, 119-130, 2013.
doi:10.2528/PIERC13010605

15. Xu, H.-X., G.-M. Wang, Q. Peng, and J.-G. Liang, "Novel design of tri-band bandpass filter based on fractal shaped geometry of complementary single split ring resonator," International Journal of Electronics, Vol. 98, No. 5, 647-654, May 2011.
doi:10.1080/00207217.2010.520156

16. Xu, H.-X., G.-M. Wang, and J.-G. Liang, "Novel designed CSRRs and its application in tunable tri-band bandpass filter based on fractal geometry," Radioengineering, Vol. 20, No. 1, 312-316, Apr. 2011.

17. Yang, S., L. Lei, J.-Z. Chen, K. Deng, and C.-H. Liang, "Design of compact dual-band bandpass filter using dual-mode stepped- impedance stub resonators," Electronics Letters, Vol. 50, No. 8, 611-613, Apr. 10, 2014.
doi:10.1049/el.2013.4217

18. Tsai, C.-M. and S.-Y. Lee, "Performance of a planar filter using a 0˚ feed structure," IEEE Trans. Microw. Theory and Tech., Vol. 50, No. 10, 2362-2367, Oct. 2002.
doi:10.1109/TMTT.2002.803421

19. IE3D Simulator Zeland Software, Inc., , , 2002.