Vol. 63
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2015-05-20
Wide-Band Chaotic Noise Signal for Velocity Estimation and Imaging of High-Speed Moving Targets
By
Progress In Electromagnetics Research B, Vol. 63, 1-15, 2015
Abstract
This paper proposes a burst model of chaotic noise signals with randomly stepped carrier frequencies for velocity estimation and high-resolution range imaging of high-speed moving targets. The random stepping of carrier frequencies is controlled by a combination chaotic map (CCM), which is generated by embedding a Logistic map into a Bernoulli map. The baseband noise signal adopts the CCM based frequency-modulation (CCM-FM) signal, which has good randomness and a thumbtack ambiguity function as well. The velocity estimation includes a coarse search where the coarse search is conducted with a fixed step to makes the velocity deviation less than the velocity resolution, while the precise search adopts the Golden Section Search (GSS) algorithm to get an accurate estimation of velocity. What should be emphasized is that the velocity estimation process can be completed with just a burst of subpulses. Then the spectra are coherently synthesized to obtain ultra-wide bandwidth and high-resolution range imaging. Finally, numerical simulations demonstrate a good performance of the proposed signal model and the processing algorithm.
Citation
Qilun Yang, Yunhua Zhang, and Xiang Gu, "Wide-Band Chaotic Noise Signal for Velocity Estimation and Imaging of High-Speed Moving Targets," Progress In Electromagnetics Research B, Vol. 63, 1-15, 2015.
doi:10.2528/PIERB15030402
References

1. Li, N.-J. and Y.-T. Zhang, "A survey of radar ECM and ECCM," IEEE Transactions on Aerospace and Electronic Systems, Vol. 31, 1110-1120, 1995.
doi:10.1109/7.395232        Google Scholar

2. Spezio, A. E., "Electronic warfare systems," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, 633-644, 2002.
doi:10.1109/22.989948        Google Scholar

3. Maksimov, M. V., M. Bobnev, L. N. Shustov, B. Krivitskii, G. I. Gorgonov, V. Ilin, et al. Radar Anti-jamming Techniques, Artech House, Inc., Dedham, Massachusetts, 1979.

4. Schleher, D. C., "Low probability of intercept radar," International Radar Conference, 346-349, 1985.        Google Scholar

5. Lukin, K. and K. Kulpa, "Noise radar technology," International Radar Symposium, Wroclaw, Poland, 2008.        Google Scholar

6. Garmatyuk, D. S. and R. M. Narayanan, "ECCM capabilities of an ultrawideband bandlimited random noise imaging radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 38, 1243-1255, 2002.
doi:10.1109/TAES.2002.1145747        Google Scholar

7. Liu, G., H. Gu, and W. Su, "Development of random signal radars," IEEE Transactions Aerospace and Electronic Systems, Vol. 35, 770-777, 1999.
doi:10.1109/7.784050        Google Scholar

8. Zhang, Q., T.-S. Yeo, and G. Du, "ISAR imaging in strong ground clutter using a new stepped-frequency signal format," IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, 948-952, 2003.
doi:10.1109/TGRS.2003.811760        Google Scholar

9. Wen, L., L. Teng, and Y. Han, "Moving targets imaging for stepped frequency radar," 5th International Conference on Signal Processing Proceedings, Vol. 3, 1851-1855, Beijing, China, 2000.
doi:10.1109/ICOSP.2000.893463        Google Scholar

10. Axelsson, S. R. J., "Analysis of ultra wide band noise radar with randomized stepped frequency," International Radar Symposium, 1-4, Krakow, Poland, 2006.        Google Scholar

11. Liu, Z., B. Deng, and X. Wei, "Modified stepped-frequency train of LFM pulses," International Conference on Information and Automation (ICIA), 1137-1141, Zhangjiajie, China, 2008.        Google Scholar

12. Levanon, N., "Stepped-frequency pulse-train radar signal," IEE Proceedings — Radar, Sonar and Navigation, Vol. 149, 297-309, 2002.
doi:10.1049/ip-rsn:20020432        Google Scholar

13. Wehner, D. R., High Resolution Radar, Artech House, Norwood, MA, 1987.

14. Dang, H., "Stepped frequency chirp signal SAR imaging," 1st Asian and Pacific Conference on Synthetic Aperture Radar, 14-18, Huangshan, China, 2007.        Google Scholar

15. Yu, T., L. Chi, Y.-Q. Feng, C.-D. Li, and F. Zhu, "A coherent jamming approach of frequency-stepped chirp ISAR," Modern Radar, Vol. 7, 013, 2010.        Google Scholar

16. Li, Y. and H.-L. Chen, "Study on deception jamming against stepped-frequency ISAR," Xiandai Leida (Modern Radar), Vol. 29, 80-84, 2007.        Google Scholar

17. Gu, X., Y. Zhang, and X. Zhang, "Stepped frequency random noise uwb radar signal," 3rd International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), 1-4, Seoul, 2011.        Google Scholar

18. Hamilton, A. R. and R. D. Tollefson, "Frequency searching and/or jamming means,", United States Patent, 1981.        Google Scholar

19. Gonzalez-Blanco, P., E. de Diego, E. Millan, B. Errasti, and I. Montiel, "Stepped-frequency waveform radar demonstrator and its jamming," International Waveform Diversity and Design Conference, 192-196, Kissimmee, FL, 2009.        Google Scholar

20. Narayanan, R. M., J. O. Curtis, Y. Xu, and P. D. Hoffmeyer, "Design, performance, and applications of a coherent ultra-wideband random noise radar," Optical Engineering, Vol. 37, 1855-1869, 1998.
doi:10.1117/1.601699        Google Scholar

21. Narayanan, R. M. and M. Dawood, "Doppler estimation using a coherent ultrawide-band random noise radar," IEEE Transactions on Antennas and Propagation, Vol. 48, 868-878, 2000.
doi:10.1109/8.865218        Google Scholar

22. Narayanan, R. M. and X. Xu, "Principles and applications of coherent random noise radar technology," Proceedings of SPIE, 503-514, 2003.
doi:10.1117/12.484912        Google Scholar

23. Lukin, K. A., "Radar design using noise/random waveforms," International Radar Symposium, 1-4, Krakow, Poland, 2006.        Google Scholar

24. Ashtari, A., G. Thomas, H. Garces, and B. C. Flores, "Radar signal design using chaotic signals," International Waveform Diversity and Design Conference, 353-357, Pisa, Italy, 2007.        Google Scholar

25. Yang, Q., Y. Zhang, and B. Li, "FPGA-based real-time generator of combination chaotic frequency-modulated signal for noise radar," PIERS Proceedings, 534-536, Guangzhou, China, Aug. 25–28, 2014.        Google Scholar

26. Chua, M. Y. and V. C. Koo, "FPGA-based chirp generator for high resolution UAV SAR," Progress In Electromagnetics Research, Vol. 99, 71-88, 2009.
doi:10.2528/PIER09100301        Google Scholar

27. Yang, Q., Y. Zhang, and X. Gu, "A signal model based on combination chaotic map for noise radar," Progress In Electromagnetics Research M, Vol. 28, 57-71, 2013.
doi:10.2528/PIERM12111707        Google Scholar

28. Zhang, Y., J. Wu, and H. Li, "Two simple and efficient approaches for compressing stepped chirp signals," Asia-Pacific Conference Proceedings Microwave Conference Proceedings, 4, Suzhou, China, 2005.        Google Scholar

29. Levanon, N. and E. Mozeson, "Nullifying ACF grating lobes in stepped-frequency train of LFM pulses," IEEE Transactions on Aerospace and Electronic Systems, Vol. 39, 694-703, 2003.
doi:10.1109/TAES.2003.1207275        Google Scholar

30. Schuster, H. G., Deterministic Chaos: An Introduction, Fourth, Revised and Enlarged Edition, WILEY-VCH Verlag, Weinheim, 2005.
doi:10.1002/3527604804

31. Flores, B. C., E. A. Solis, and G. Thomas, "Assessment of chaos-based FM signals for range-Doppler imaging," IEE Proceedings — Radar, Sonar and Navigation, Vol. 150, 313-322, 2003.
doi:10.1049/ip-rsn:20030728        Google Scholar

32. Levanon, N. and E. Mozeson, Radar Signals, Wiley & Sons, Inc., New Jersey, 2004.
doi:10.1002/0471663085

33. Bassem, R. and Z. Atef, Matlab Simulations for Radar Systems Design, CRC Press, USA, 2004.

34. Richards, M. A., Fundamentals of Radar Signal Processing, Tata McGraw-Hill Education, New York, USA , 2005.

35. Ashtari, A., G. Thomas, W. Kinsner, and B. C. Flores, "Sufficient condition for chaotic maps to yield chaotic behavior after FM," IEEE Transactions on Aerospace and Electronic Systems, Vol. 44, 1240-1248, 2008.
doi:10.1109/TAES.2008.4655379        Google Scholar

36. Oppenheim, A. V., A. S. Willsky, and S. H. Nawab, Signals and Systems, Prentice Hall, New Jersey, 1997.

37. Luenberger, D. G., Introduction to Linear and Nonlinear Programming, Addison-Wesley Reading, MA, 1973.

38. Yuan, Y. and W. Sun, Optimization Theory and Methods, Science Press, Beijing, China, 1997.

39. Luenberger, D. G. and Y. Ye, Linear and Nonlinear Programming, Springer Science & Business Media, New York, USA, 2008.

40. Riming, S. and C. Liuchen, "A new maximum power point tracking method for photovoltaic arrays using golden section search algorithm," Canadian Conference on Electrical and Computer Engineering, 619-622, Ontario, Canada, 2008.        Google Scholar

41. Agrawal, J. and M. Aware, "Golden section search (GSS) algorithm for maximum power point tracking in photovoltaic system," 5th International Conference on Power Electronics (IICPE), 1-6, Delhi, 2012.        Google Scholar

42. Zhai, W. and Y. Zhang, "A stepped frequency chirp scaling algorithm for high resolution SAR imaging," 3rd International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), 1-4, Seoul, Korea, 2011.        Google Scholar

43. Zhao, L., J. Mu, X. J. Fu, and M. Gao, "A novel method of ISAR imaging for high speed targets using stepped-frequency chirp waveform," IEEE CIE International Conference on Radar (Radar), 1604-1607, Chengdu, China, 2011.
doi:10.1109/CIE-Radar.2011.6159871        Google Scholar

44. Yuan, H., M. Gao, and G. Liu, "Coherent spectrum synthesis of frequency-stepped chirp signal," IET International Radar Conference, 1-4, Guilin, China, 2009.        Google Scholar