1. Li, N.-J. and Y.-T. Zhang, "A survey of radar ECM and ECCM," IEEE Transactions on Aerospace and Electronic Systems, Vol. 31, 1110-1120, 1995.
doi:10.1109/7.395232 Google Scholar
2. Spezio, A. E., "Electronic warfare systems," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, 633-644, 2002.
doi:10.1109/22.989948 Google Scholar
3. Maksimov, M. V., M. Bobnev, L. N. Shustov, B. Krivitskii, G. I. Gorgonov, V. Ilin, et al. Radar Anti-jamming Techniques, Artech House, Inc., Dedham, Massachusetts, 1979.
4. Schleher, D. C., "Low probability of intercept radar," International Radar Conference, 346-349, 1985. Google Scholar
5. Lukin, K. and K. Kulpa, "Noise radar technology," International Radar Symposium, Wroclaw, Poland, 2008. Google Scholar
6. Garmatyuk, D. S. and R. M. Narayanan, "ECCM capabilities of an ultrawideband bandlimited random noise imaging radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 38, 1243-1255, 2002.
doi:10.1109/TAES.2002.1145747 Google Scholar
7. Liu, G., H. Gu, and W. Su, "Development of random signal radars," IEEE Transactions Aerospace and Electronic Systems, Vol. 35, 770-777, 1999.
doi:10.1109/7.784050 Google Scholar
8. Zhang, Q., T.-S. Yeo, and G. Du, "ISAR imaging in strong ground clutter using a new stepped-frequency signal format," IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, 948-952, 2003.
doi:10.1109/TGRS.2003.811760 Google Scholar
9. Wen, L., L. Teng, and Y. Han, "Moving targets imaging for stepped frequency radar," 5th International Conference on Signal Processing Proceedings, Vol. 3, 1851-1855, Beijing, China, 2000.
doi:10.1109/ICOSP.2000.893463 Google Scholar
10. Axelsson, S. R. J., "Analysis of ultra wide band noise radar with randomized stepped frequency," International Radar Symposium, 1-4, Krakow, Poland, 2006. Google Scholar
11. Liu, Z., B. Deng, and X. Wei, "Modified stepped-frequency train of LFM pulses," International Conference on Information and Automation (ICIA), 1137-1141, Zhangjiajie, China, 2008. Google Scholar
12. Levanon, N., "Stepped-frequency pulse-train radar signal," IEE Proceedings — Radar, Sonar and Navigation, Vol. 149, 297-309, 2002.
doi:10.1049/ip-rsn:20020432 Google Scholar
13. Wehner, D. R., High Resolution Radar, Artech House, Norwood, MA, 1987.
14. Dang, H., "Stepped frequency chirp signal SAR imaging," 1st Asian and Pacific Conference on Synthetic Aperture Radar, 14-18, Huangshan, China, 2007. Google Scholar
15. Yu, T., L. Chi, Y.-Q. Feng, C.-D. Li, and F. Zhu, "A coherent jamming approach of frequency-stepped chirp ISAR," Modern Radar, Vol. 7, 013, 2010. Google Scholar
16. Li, Y. and H.-L. Chen, "Study on deception jamming against stepped-frequency ISAR," Xiandai Leida (Modern Radar), Vol. 29, 80-84, 2007. Google Scholar
17. Gu, X., Y. Zhang, and X. Zhang, "Stepped frequency random noise uwb radar signal," 3rd International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), 1-4, Seoul, 2011. Google Scholar
18. Hamilton, A. R. and R. D. Tollefson, "Frequency searching and/or jamming means,", United States Patent, 1981. Google Scholar
19. Gonzalez-Blanco, P., E. de Diego, E. Millan, B. Errasti, and I. Montiel, "Stepped-frequency waveform radar demonstrator and its jamming," International Waveform Diversity and Design Conference, 192-196, Kissimmee, FL, 2009. Google Scholar
20. Narayanan, R. M., J. O. Curtis, Y. Xu, and P. D. Hoffmeyer, "Design, performance, and applications of a coherent ultra-wideband random noise radar," Optical Engineering, Vol. 37, 1855-1869, 1998.
doi:10.1117/1.601699 Google Scholar
21. Narayanan, R. M. and M. Dawood, "Doppler estimation using a coherent ultrawide-band random noise radar," IEEE Transactions on Antennas and Propagation, Vol. 48, 868-878, 2000.
doi:10.1109/8.865218 Google Scholar
22. Narayanan, R. M. and X. Xu, "Principles and applications of coherent random noise radar technology," Proceedings of SPIE, 503-514, 2003.
doi:10.1117/12.484912 Google Scholar
23. Lukin, K. A., "Radar design using noise/random waveforms," International Radar Symposium, 1-4, Krakow, Poland, 2006. Google Scholar
24. Ashtari, A., G. Thomas, H. Garces, and B. C. Flores, "Radar signal design using chaotic signals," International Waveform Diversity and Design Conference, 353-357, Pisa, Italy, 2007. Google Scholar
25. Yang, Q., Y. Zhang, and B. Li, "FPGA-based real-time generator of combination chaotic frequency-modulated signal for noise radar," PIERS Proceedings, 534-536, Guangzhou, China, Aug. 25–28, 2014. Google Scholar
26. Chua, M. Y. and V. C. Koo, "FPGA-based chirp generator for high resolution UAV SAR," Progress In Electromagnetics Research, Vol. 99, 71-88, 2009.
doi:10.2528/PIER09100301 Google Scholar
27. Yang, Q., Y. Zhang, and X. Gu, "A signal model based on combination chaotic map for noise radar," Progress In Electromagnetics Research M, Vol. 28, 57-71, 2013.
doi:10.2528/PIERM12111707 Google Scholar
28. Zhang, Y., J. Wu, and H. Li, "Two simple and efficient approaches for compressing stepped chirp signals," Asia-Pacific Conference Proceedings Microwave Conference Proceedings, 4, Suzhou, China, 2005. Google Scholar
29. Levanon, N. and E. Mozeson, "Nullifying ACF grating lobes in stepped-frequency train of LFM pulses," IEEE Transactions on Aerospace and Electronic Systems, Vol. 39, 694-703, 2003.
doi:10.1109/TAES.2003.1207275 Google Scholar
30. Schuster, H. G., Deterministic Chaos: An Introduction, Fourth, Revised and Enlarged Edition, WILEY-VCH Verlag, Weinheim, 2005.
doi:10.1002/3527604804
31. Flores, B. C., E. A. Solis, and G. Thomas, "Assessment of chaos-based FM signals for range-Doppler imaging," IEE Proceedings — Radar, Sonar and Navigation, Vol. 150, 313-322, 2003.
doi:10.1049/ip-rsn:20030728 Google Scholar
32. Levanon, N. and E. Mozeson, Radar Signals, Wiley & Sons, Inc., New Jersey, 2004.
doi:10.1002/0471663085
33. Bassem, R. and Z. Atef, Matlab Simulations for Radar Systems Design, CRC Press, USA, 2004.
34. Richards, M. A., Fundamentals of Radar Signal Processing, Tata McGraw-Hill Education, New York, USA , 2005.
35. Ashtari, A., G. Thomas, W. Kinsner, and B. C. Flores, "Sufficient condition for chaotic maps to yield chaotic behavior after FM," IEEE Transactions on Aerospace and Electronic Systems, Vol. 44, 1240-1248, 2008.
doi:10.1109/TAES.2008.4655379 Google Scholar
36. Oppenheim, A. V., A. S. Willsky, and S. H. Nawab, Signals and Systems, Prentice Hall, New Jersey, 1997.
37. Luenberger, D. G., Introduction to Linear and Nonlinear Programming, Addison-Wesley Reading, MA, 1973.
38. Yuan, Y. and W. Sun, Optimization Theory and Methods, Science Press, Beijing, China, 1997.
39. Luenberger, D. G. and Y. Ye, Linear and Nonlinear Programming, Springer Science & Business Media, New York, USA, 2008.
40. Riming, S. and C. Liuchen, "A new maximum power point tracking method for photovoltaic arrays using golden section search algorithm," Canadian Conference on Electrical and Computer Engineering, 619-622, Ontario, Canada, 2008. Google Scholar
41. Agrawal, J. and M. Aware, "Golden section search (GSS) algorithm for maximum power point tracking in photovoltaic system," 5th International Conference on Power Electronics (IICPE), 1-6, Delhi, 2012. Google Scholar
42. Zhai, W. and Y. Zhang, "A stepped frequency chirp scaling algorithm for high resolution SAR imaging," 3rd International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), 1-4, Seoul, Korea, 2011. Google Scholar
43. Zhao, L., J. Mu, X. J. Fu, and M. Gao, "A novel method of ISAR imaging for high speed targets using stepped-frequency chirp waveform," IEEE CIE International Conference on Radar (Radar), 1604-1607, Chengdu, China, 2011.
doi:10.1109/CIE-Radar.2011.6159871 Google Scholar
44. Yuan, H., M. Gao, and G. Liu, "Coherent spectrum synthesis of frequency-stepped chirp signal," IET International Radar Conference, 1-4, Guilin, China, 2009. Google Scholar