1. Adopted Oct. 18 "First Report and Notice of Rulemaking in the Matter of Unlicensed Operation in TV Broadcast Bands, ET Docket No. 04-186,", 2006.
doi:10.1109/11.664027 Google Scholar
2. Prasad, M. V. S. N. and I. Ahmad, "Comparison of some path loss prediction methods with VHF/UHF measurements," IEEE Transactions on Broadcasting, Vol. 43, No. 4, 459-486, Dec. 1997.
doi:10.1109/25.820717 Google Scholar
3. Prasad, M. V. S. N. and R. Singh, "UHF train radio measurements in northern India," IEEE Transactions on Vehicular Technology, Vol. 49, No. 1, 239-245, USA, Jan. 2000.
doi:10.1109/TVT.2003.813153 Google Scholar
4. Prasad, M. V. S. N. and R. Singh, "Terrestrial mobile communication train measurements in western India," IEEE Transactions on Vehicular Technology, Vol. 52, No. 3, 671-682, May 2003. Google Scholar
5. Prasad, M. V. S. N., T. Rama Rao, I. Ahmad, and K. M. Paul, "Investigation of VHF signals in bands I and II in southern India and model comparisons," Indian Journal of Radio and Space Physics, Vol. 35, 198-205, Jun. 2006.
doi:10.1109/TBC.2006.879853 Google Scholar
6. Prasad, M. V. S. N., "Path loss exponents deduced from VHF amp; UHF measurements over Indian subcontinent and model comparison," IEEE Transactions on Broadcasting, Vol. 52, No. 3, 290-298, 2006. Google Scholar
7. Pathania, P., P. Kumar, and B. Shashi Rana, "Performance evaluation of different path loss models for broadcasting applications," American Journal of Engineering Research (AJER), Vol. 3, No. 4, 335-342, 2014. Google Scholar
8. Pathania, P., P. Kumar, and B. Shashi Rana, "A modified formulation of path loss models for broadcasting applications," International Journal of Recent Technology and Engineering (IJRTE), Vol. 3, No. 3, 44-54, Jul. 2014. Google Scholar
9. Ying, X., C. W. Kim, and S. Roy, "Revisiting TV coverage estimation with measurement-based statistical interpolation,", http://www.dynamicspectrumalliance.org/assets/Revisiting TV Coverage Estimation with Measurement-based Statistical Interpolation 08202014.pdf.
doi:10.1504/IJWMC.2014.065607 Google Scholar
10. Faruk, N., A. A. Ayeni, Y. Adediran, and N. Surajudeen-Bakinde, "Improved pathloss model for predicting TV coverage for secondary access," International Journal of Wireless and Mobile Computing, Vol. 7, No. 6, 565-576, 2014. Google Scholar
11. Mohammed Al Salameh, S. H., "Lateral ITU-R foliage and maximum attenuation models combined with relevant propagation models for forest at the VHF and UHF bands," NNGT Int. J. on Networking and Communication, Vol. 1, Jul. 2014. Google Scholar
12. Sridhar, B. and M. Z. A. Khan, "RMSE comparison of path loss models for UHF/VHF bands in India," 2014 IEEE Region 10 Symposium, 330-335, Kuala Lumpur, Malaysia, Apr. 14–16, 2014.
doi:10.1109/T-VT.1980.23859 Google Scholar
13. Hata, M., "Empirical formula for propagation loss in land mobile radio services," IEEE Trans. Vehicular Technology, Vol. 29, 317-325, 1980. Google Scholar
14. Farhoud, M., A. El-Keyi, and A. Sultan, "Empirical correction of the Okumura-Hata model for the 900MHz band in Egypt," International Conference on Communications and Information Technology (ICCIT-2013): IEEE Wireless Communications and Signal Processing, 386-390, Beirut, Lebanon, Jun. 19–21, 2013.
doi:10.1109/TBC.2002.1021273 Google Scholar
15. Perez-Vega, C. and J. M. Zamanillo, "Path-loss model for broadcasting applications and outdoor communication systems in the VHF and UHF bands," IEEE Transactions on Broadcasting, Vol. 48, No. 2, 91-96, Jun. 2002.
doi:10.2528/PIERC10011804 Google Scholar
16. Roslee, M. B. and K. F. Kwan, "Optimization of Hata propagation prediction model in suburban area in Malaysia," Progress In Electromagnetics Research C, Vol. 13, 91-106, 2010.
doi:10.1109/JRPROC.1957.278224 Google Scholar
17. Egli, J. J., "Radio propagation above 40 MC over irregular terrain," Proceedings of the IRE, Vol. 45, No. 10, 1383-1391, 1957. Google Scholar
18. Sharma, P. K. and R. K. Singh, "Comparative study of path loss model depends on various parameter," International Journal of Engineering Science and Technology, Vol. 3, 4683-4690, Jun. 2011. Google Scholar
19. Dayanand, A., K. Deepak, and P. Tejas, "Statistical tuning of Walfisch-Ikegami model in urban and suburban environments," Fourth Asia International Conference on AMS, 538-543, Kota Kinabalu, Malaysia, 2010. Google Scholar
20. ITU-R P.529-3 "VHF/UHF propagation data and prediction methods required for the terrestrial land mobile services,", 1994. Google Scholar
21. Green, D. B. and M. S. Obaidat, "An accurate line of sight propagation performance model for Ad-Hoc 802.11 wireless LAN (WLAN) devices," Proceedings of IEEE ICC 2002, New York, Apr. 2002. Google Scholar
22. http://en.wikipedia.org/wiki/Free-space path loss. Google Scholar
23. Rice, P. L., A. G. Longley, K. A. Norton, and A. P. Barsis, "Transmission loss predictions for tropospheric communications circuits,", Technical Note 101, US Department of Commerce NTIAITS, 1967. Google Scholar
24. Rappaport, T. S., Wireless Communications Principles and Practice, Prentice Hall, 2002.
25. Erceg, V., K. V. S. Hari, et al. "Channel models for fixed wireless applications,", Tech. Rep., IEEE 802.16 Broadband Wireless Access Working Group, Jan. 1986. Google Scholar