Vol. 54
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-07-22
Analytical Solution for Capacitance and Characteristic Impedance of CPW with Defected Structures in Signal Line
By
Progress In Electromagnetics Research Letters, Vol. 54, 79-84, 2015
Abstract
This paper presents an analytical solution for capacitance and characteristic impedance of CPW with defected structures (CPW_DS) in signal line. The first category of incomplete elliptic integrals F(φ, k) is employed for calculation, and the capacitance and characteristic impedance of CPW_GS in signal line are first time achieved by the analytical solution. FEM simulation results are used toverify the results of analytical solution,which shows a good agreement. All calculations are completed in software Wolfram Mathematica, and CPW structures are simulated in software HFSS.
Citation
Naibo Zhang, Zhongliang Deng, Lingmin Shao, and Jun Yang, "Analytical Solution for Capacitance and Characteristic Impedance of CPW with Defected Structures in Signal Line," Progress In Electromagnetics Research Letters, Vol. 54, 79-84, 2015.
doi:10.2528/PIERL15051205
References

54. Gupta, K. C., R. Garg, I. Bahl, and P. Bhartia, "Coplanar lines: Coplanar waveguide and coplana strips," Microstrip Lines and Slot lines, 2nd Edition, Chapter 7, Artech House, Norwood, MA, 1996.

2. Zhu, L. and K. Wu, "Characterization of finite-ground CPW reactive series-connected elements for innovative design of uniplanar M(H)MICs," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 2, 549-557, Feb. 2002.
doi:10.1109/22.982234

3. Wen, C. P., "Coplanar waveguide: A Surface strip transmission line suitable for non-reciprocal gyromagnetic device application," IEEE Trans. Microw. Theory Tech., Vol. 18, No. 17, 1087-1090, 1969.
doi:10.1109/TMTT.1969.1127105

4. Davis, M. E., et al. "Finite boundary corrections to the coplanar waveguide analysis," IEEE Trans. Microw. Theory Tech., Vol. 21, No. 9, 594-596, 1973.
doi:10.1109/TMTT.1973.1128081

5. Dib, N. I., M. Gupta, G. E. Ponchak, and L. P. B. Katehi, "Characterization of asymmetric coplanar waveguide discontinuities," IEEE Trans. Microw. Theory Tech., Vol. 41, No. 9, 345-352, Sep. 1993.
doi:10.1109/22.245676

6. Linner, L. J. P. and E. L. Kollberg, "CAD models for shielded multilayered CPW," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 4, 772-779, Apr. 1995.
doi:10.1109/22.375223

7. Zhu, L., "Unified 3-D definition of CPW- and CSL-mode characteristic impedances of coplanar waveguide using MOM-SOC technique," IEEE Microwave and Wireless Components Letters, Vol. 13, No. 4, 158-160, 2003.
doi:10.1109/LMWC.2003.811043

8. Dib, N., "Comprehensive study of CAD models of several coplanar waveguide (CPW) discontinuities," IEE Proc. Microw. Antennas Propag., Vol. 152, No. 2, 69-76, Apr. 2005.
doi:10.1049/ip-map:20045039

9. Simons, R., Coplanar Waveguide Circuits, Components, and System, John Wiley & Sons, Ann Arbor, 2001.
doi:10.1002/0471224758

10. Zhang, X. and T. Miyoshi, "Optimum design of coplanar waveguide for LiNbO3 optical modulator," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 3, 523-528, 1995.
doi:10.1109/22.372096

11. Davis, M. E., et al. "Finite boundary corrections to the coplanar waveguide analysis," IEEE Trans. Microw. Theory Tech., Vol. 21, No. 9, 594-596, 1973.
doi:10.1109/TMTT.1973.1128081

12. Fang, S., "Study on the characteristic and field pattern of asymmetric coplanar waveguides,", Doctoral Thesis, Dalian Maritime University, Feb. 2001.

13. Zhang, N.-B. and Z.-L. Deng, "Method to design microwave band-stop filter based on CPW," Electronics Letters, Vol. 47, No. 8, 450-451, Mar. 2011.
doi:10.1049/el.2010.3623

14. Guo, X. L., C. Xu, G. A. Zhang, Z. J. Zhang, H. H. Yin, and Z. L. Wang, "Tunable low-pass MEMS filter using defected ground structures (DGS)," Solid-State Electronics, Vol. 94, No. 6, 28-31, 2014.
doi:10.1016/j.sse.2013.12.012

15. Zhang, C., J. Zhang, and L. Li, "Triple band-notched UWB antenna based on SIR-DGS and fork-shaped stubs," Electronics Letters, Vol. 50, No. 2, 67-69, Jan. 2013.
doi:10.1049/el.2013.2513

16. Liang, C., Concise Microwave, 163-164, Higher Education Press, 2006.