1. Adler, A. and M. Salhov, "A carrier-grade wireless lan network implementation [application notes]," IEEE Microwave Magazine, Vol. 9, No. 4, 108-119, 2008.
doi:10.1109/MMM.2008.924759 Google Scholar
2. Halperin, D., et al. "Predictable 802.11 packet delivery from wireless channel measurements," ACM SIGCOMM Computer Communication Review, Vol. 41, No. 4, 159-170, 2011.
doi:10.1145/2043164.2018442 Google Scholar
3. Paul, T. K. and T. Ogunfunmi, "Wireless LAN comes of age: Understanding the IEEE 802.11n amendment," IEEE Circuits and Systems Magazine,, Vol. 8, No. 1, 28-54, 2008.
doi:10.1109/MCAS.2008.915504 Google Scholar
4. Sklar, B., "Rayleigh fading channels in mobile digital communication systems. A characterization," IEEE Communications Magazine, Vol. 35, No. 7, 90-100, 1997.
doi:10.1109/35.601747 Google Scholar
5. Phillips, C., D. Sicker, and D. Grunwald, "A survey of wireless path loss prediction and coverage mapping methods," IEEE Communications Surveys & Tutorials, Vol. 15, No. 1, 255-270, 2013.
doi:10.1109/SURV.2012.022412.00172 Google Scholar
6. Almorox-González, P. and J. I. Alonso, "Software tool for planning wireless local area networks (WLAN)," The European Conference on Wireless Technology, 387-390, IEEE, 2005. Google Scholar
7. Li, M. and D. Wang, "Indoor coverage performance comparison between IEEE 802.11g and IEEE 802.11ah of wireless nodes in M2M network," Internet of Vehicles-Technologies and Services, 211-217, Springer International Publishing, 2014. Google Scholar
8. Lopez-Perez, D. and M. Folke, "3 system-level simulation and evaluation models," Heterogeneous Cellular Networks: Theory, Simulation and Deployment, 2013. Google Scholar
9. International Telecommunications Union, Radiocommunications Bureau, "Recommendation ITUR P.1411-7: Propagation data and prediction methods for the planning of short-range outdoor radiocommunication systems and radio local area networks in the frequency range 300MHz to 100 GHz,", Sep. 2013. Google Scholar
10. Priya, T. S., S. P. N. Pillay, M. Saargunawathy, and D. Madhavan, "An investigation on the use of ITU-R P.1411-7 in 802.11n path loss modelling," Progress In Electromagnetics Research Letters, Vol. 50, 91-98, 2014.
doi:10.2528/PIERL14101601 Google Scholar
11. Salo, L. V., H. M. El-Sallabi, and P. Vainikainen, "An additive model as a physical basis for shadow fading," IEEE Transactions on Vehicular Technology, Vol. 56, No. 1, 13-26, Jan. 2007.
doi:10.1109/TVT.2006.883797 Google Scholar
12. International Telecommunications Union, Radiocommunications Bureau, "Recommendation ITUR P.1546-5 method for point-to-area predictions for terrestrial services in the frequency range 30 MHz to 3000 MHz,", Sep. 2013. Google Scholar
13. Nasreddine, H. and I. Jabri, "On the performance of IEEE 802.11 n protocol," Wireless and Mobile Networking Conference (WMNC), 2012 5th Joint IFIP, 2012. Google Scholar
14. Shittu, W. A., et al. "Prediction of received signal power and propagation path loss in open/rural environments using modified free-space loss and Hata models," RF and Microwave Conference, RFM, 2008. Google Scholar