Vol. 63
Latest Volume
All Volumes
PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2015-09-23
Electromagnetic Fields in Quasi-Fractal Waveguides Coated with Chiral Nihility Metamaterial
By
Progress In Electromagnetics Research B, Vol. 63, 203-216, 2015
Abstract
Solutions of Maxwell's equations for electromagnetic fields inside a waveguide coated with chiral nihility metamaterial and having one axis fractal are presented in this paper. A two-dimensional line source placed at the center of the waveguide is taken as an excitation. Power of electromagnetic fields inside the waveguide is determined, and results are plotted for various fractal dimension values ranging from 1 < D ≤ 2, and thickness of the chiral nihility coating.
Citation
Samina Gulistan, Aqeel Abbas Syed, and Qaisar Naqvi, "Electromagnetic Fields in Quasi-Fractal Waveguides Coated with Chiral Nihility Metamaterial," Progress In Electromagnetics Research B, Vol. 63, 203-216, 2015.
doi:10.2528/PIERB15053004
References

1. Oldham, K. B. and J. Spanier, The Fractional Calculus, Academic Press, New York, 1974.

2. Hilfer, R., Applications of Fractional Calculus in Physics, World Scientific, 2000.

3. Debnath, L., "Recent applications of fractional calculus to science and engineering," International Journal of Mathematics and Mathematical Sciences, Vol. 54, 3413-3442, 2003.
doi:10.1155/S0161171203301486

4. Engheta, N., "A note on fractional calculus and the image method for dielectric spheres," Journal of Electromagnetic Waves and Applications, Vol. 9, No. 9, 1179-1188, 1995.

5. Engheta, N., "Use of fractional integration to propose some ``fractional'' solutions for the scalar helmholtz equation," Progress In Electromagnetics Research, Vol. 12, 107-132, 1996.

6. Engheta, N., "Electrostatic fractional image methods for perfectly conducting wedges and cones," IEEE Transactions on Antennas and Propagation, Vol. 44, 1565-1574, 1996.
doi:10.1109/8.546242

7. Engheta, N., "On the role of fractional calculus in electromagnetic theory," IEEE Antennas and Propagation Magazine, Vol. 39, 35-46, 1997.
doi:10.1109/74.632994

8. Stillinger, F. H., "Axiomatic basis for spaces with non-integer dimension," Journal of Mathematical Physics, Vol. 18, No. 6, 1224-1234, 1977.
doi:10.1063/1.523395

9. Leibbrandt, G., "Introduction to the technique of dimensional regularization," Rev. Mod. Phys., Vol. 47, No. 4, 849-876, 1975.
doi:10.1103/RevModPhys.47.849

10. Wilson, K. G. and M. E. Fisher, "Critical exponents in 3.99 dimensions," Phys. Rev. Lett., Vol. 28, No. 4, 240-243, 1972.
doi:10.1103/PhysRevLett.28.240

11. He, X. F., "Anisotropy and isotropy: A model of fraction-dimensional space," Solid State Communications, Vol. 75, No. 2, 111-114, 1990.
doi:10.1016/0038-1098(90)90352-C

12. Tarasov, V. E., "Vector calculus in non-integer dimensional space and its applications to fractal media," Commun. Nonlinear Sci. Numer. Simul., Vol. 20, No. 2, 360-374, 2015.
doi:10.1016/j.cnsns.2014.05.025

13. Palmer, C. and P. N. Stavrinou, "Equations of motion in a non-integer dimension space," J. Phys. A, Vol. 37, 6987-7003, 2004.
doi:10.1088/0305-4470/37/27/009

14. He, X.-F., "Fractional dimensionality and fractional derivative spectra of interband optical transitions," Phys. Rev. B, Vol. 42, No. 18, 11751-11756, 1990.
doi:10.1103/PhysRevB.42.11751

15. He, X.-F., "Excitons in anisotropic solids: The model of fractional-dimensional space," Phys. Rev. B, Vol. 43, No. 3, 2063-2069, 1991.
doi:10.1103/PhysRevB.43.2063

16. Lohe, M. A. and A. Thilagam, "Quantum mechanical models in fractional dimensions," J. Phys. A, Vol. 37, No. 23, 61-81, 2004.
doi:10.1088/0305-4470/37/23/015

17. De Dios-Leyva, M., A. Bruno-Alfonso, A. Matos-Abiague, and L. E. Oliveira, "Fractional-dimensional space and applications in quantum-confined semiconducting heterostructures," J. Appl. Phys., Vol. 82, No. 6, 3155-3157, 1997.
doi:10.1063/1.366267

18. Matos-Abiague, A., "Free particle in fractional-dimensional space," Bulg. J. Phys., Vol. 27, No. 3, 54-57, 2000.

19. Matos-Abiague, A., "Deformation of quantum mechanics in fractional-dimensional space," J. Phys. A, Vol. 34, No. 49, 11059-11068, 2001.
doi:10.1088/0305-4470/34/49/321

20. Matos-Abiague, A., "Bose-like oscillator in fractional-dimensional space," J. Phys. A, Vol. 34, No. 14, 3125-3138, 2001.
doi:10.1088/0305-4470/34/14/317

21. Eid, R., S. I. Muslih, D. Baleanu, and E. Rabei, "On fractional Schrodinger equation in-dimensional fractional space," Nonlinear Anal.: Real World Appl., Vol. 10, No. 3, 1299-1304, 2009.
doi:10.1016/j.nonrwa.2008.01.007

22. Muslih, S. I. and O. P. Agrawal, Schrodinger Equation in Fractional Space, in Fractional Dynamics and Control, D. Baleanu, J. A. Tenreiro Machado, and A. C. J. Luo (eds.), Chap. 17, 209-215, Springer, New York, 2012.

23. Sandev, T., I. Petreska, and E. K. Lenzi, "Harmonic and anharmonic quantum-mechanical oscillators in noninteger dimensions," Phys. Lett. A, Vol. 378, No. 3, 109-116, 2013.
doi:10.1016/j.physleta.2013.10.048

24. Muslih, S. and D. Baleanu, "Fractional multi-poles in fractional space," Nonlinear Anal.: Real World Appl., Vol. 8, 198-203, 2007.
doi:10.1016/j.nonrwa.2005.07.001

25. Baleanu, D., A. K. Golmankhaneh, and A. K. Golmankhaneh, "On electromagnetic field in fractional space," Nonlinear Anal.: Real World Appl., Vol. 11, No. 1, 288-292, 2010.
doi:10.1016/j.nonrwa.2008.10.058

26. Tarasov, V. E., "Electromagnetic fields on fractals," Modern Physics Letters A, Vol. 21, No. 20, 1587-1600, 2006.
doi:10.1142/S0217732306020974

27. Baleanu, D., A. K. Golmankhaneh, and A. K. Golmankhaneh, "On electromagnetic field in fractional space," Nonlinear Anal.: Real World Appl., Vol. 11, No. 1, 288-292, 2010.
doi:10.1016/j.nonrwa.2008.10.058

28. Naqvi, Q. A. and A. A. Rizvi, "Fractional dual solutions and corresponding sources," Progress In Electromagnetics Research, Vol. 25, 223-238, 2000.
doi:10.2528/PIER99051801

29. Naqvi, Q. A., "Fractional dual interface in chiral nihility medium," Progress In Electromagnetics Research Letters, Vol. 8, 135-142, 2009.
doi:10.2528/PIERL09032405

30. Hussain, A., S. Ishfaq, and Q. A. Naqvi, "Fractional curl operator and fractional waveguides," Progress In Electromagnetics Research, Vol. 63, 319-335, 2006.
doi:10.2528/PIER06060604

31. Zubair, M., M. J. Mughal, Q. A. Naqvi, and A. A. Rizvi, "Differential electromagnetic equations in fractional space," Progress In Electromagnetics Research, Vol. 114, 255-269, 2011.
doi:10.2528/PIER11011403

32. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "The wave equation and general plane wave solutions in fractional space," Progress In Electromagnetics Research Letters, Vol. 19, 137-146, 2010.
doi:10.2528/PIERL10102103

33. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "On electromagnetic wave propagation in fractional space," Nonlinear Anal.: Real World Appl., Vol. 12, No. 5, 2844-2850, 2011.
doi:10.1016/j.nonrwa.2011.04.010

34. Zubair, M., M. J. Mughal, and Q. A. Naqvi, "An exact solution of the spherical wave equation in D-dimensional fractional space," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 10, 1481-1491, 2011.

35. Song, W. Z. and L. B. Wei, "The scattering of electromagnetic waves in fractal media," Waves in Random and Complex Media, Vol. 4, No. 1, 97-103, 1994.
doi:10.1088/0959-7174/4/1/010

36. Balanis, C. A., Advanced Engineering Electro-magnetics, Wiley, New York, 1989.

37. Harrington, R. F., Time-harmonic Electromagnetic Fields, McGraw-Hill Inc., New York, 1961.

38. Omer, M. and M. J. Mughal, "Behavior of electromagnetic waves at dielectric fractal-fractal interface in fractional spaces," Progress In Electromagnetics Research M, Vol. 28, 229-244, 2013.
doi:10.2528/PIERM12121903

39. Asad, H., M. Zubair, and M. J. Mughal, "Reflection and transmission at dielectric-fractal interface," Progress In Electromagnetics Research, Vol. 125, 543-558, 2012.
doi:10.2528/PIER12012402

40. Attiya, A. M., "Reflection and transmission of electromagnetic wave due to a quasi-fractional-space slab," Progress In Electromagnetics Research Letters, Vol. 24, 119-128, 2011.
doi:10.2528/PIERL11051105

41. Marwat, S. K. and M. J. Mughal, "Characteristics of multilayered metamaterial structures embedded in fractional space for tera-hertz applications," Progress In Electromagnetics Research, Vol. 144, 229-239, 2014.
doi:10.2528/PIER13110603

42. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, Boston, 1994.

43. Cheng, Q. T., J. Cui, and C. Zhang, "Waves in planar waveguide containing chiral nihility metamaterial," Optics Communications, Vol. 276, 317-321, 2007.
doi:10.1016/j.optcom.2007.04.053

44. Chew, W. C., Waves and Fields in In-homogenous Media, Van Nostrand Reinhold, New York, 1990.

45. Naqvi, A., A. Hussain, and Q. A. Naqvi, "Waves in fractional dual planar waveguides containing chiral nihility metamaterial," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11-12, 1575-1586, 2010.
doi:10.1163/156939310792149614

46. Pelet, P. and N. Engheta, "The theory of chirowaveguides," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 1, 90-98, 1990.
doi:10.1109/8.43593

47. Lakhtakia, A., Beltrami Fields in Chiral Media, World Scientific, Singapore, 1994.

48. Jaggard, D. L., A. R. Mickelson, and C. H. Papas, "On electromagnetic waves in chiral media," Applied Physics, Vol. 18, 16-21, 1979.

49. Bassiri, S., C. H. Papas, and N. Engheta, "Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab," Journal of Optical Society of America A, Vol. 5, 145-209, 1988.

50. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, Boston, 1994.

51. Lakhtakia, A., V. K. Varadan, and V. V. Varadan, Time Harmonic Electromagnetic Fields in Chiral Media, Springer, Berlin, 1989.

52. Zarifi, D., A. Abdolali, M. Soleimani, and M. V. Nayyeri, "Inhomogeneous planar layered chiral media: Analysis of wave propagation and scattering using Taylor's series expansion," Progress In Electromagnetics Research, Vol. 125, 119-135, 2012.
doi:10.2528/PIER11122804

53. Zarifi, D., M. Soleimani, and V. A. Nayyeri, "Novel dual-band chiral metamaterial structure with giant optical activity and negative refractive index," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 2-3, 251-263, 2012.
doi:10.1163/156939312800030767

54. Tretyakov, S., I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, "Waves and energy in chiral nihility," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 5, 695-706, 2003.
doi:10.1163/156939303322226356

55. Lakhtakia, A., "An electromagnetic trinity from negative permittivity and negative permeability," International Journal of Infrared and Millimeter Waves, Vol. 22, 173-214, 2001.

56. Dong, J.-F., J. Li, and F.-Q. Yang, "Guided modes in the four-layer slab waveguide containing chiral nihility core," Progress In Electromagnetics Research, Vol. 112, 241-255, 2011.
doi:10.2528/PIER10121608

57. Rahim, A. A., M. J. Mughal, and Q. A. Naqvi, "Fractional rectangular waveguide internally coated with chiral nihility metamaterial," Progress In Electromagnetics Research M, Vol. 17, 197-211, 2011.
doi:10.2528/PIERM10123010

58. Naqvi, Q. A., "Planar slab of chiral nihility metamaterial backed by fractional DUAL/PEMC interface," Progress In Electromagnetics Research, Vol. 85, 381-391, 2009.

59. Tuz, V. R. and C.-W. Qiu, "Semi-infinite chiral nihility photonics: Parametric dependence, wave tunneling and rejection," Progress In Electromagnetics Research, Vol. 103, 139-352, 2010.
doi:10.2528/PIER10030706

60. Cheng, X., H. Chen, X.-M. Zhang, B. Zhang, and B.-I.Wu, "Cloaking a perfectly conducting sphere with rotationally uniaxial nihility media in monostatic radar system," Progress In Electromagnetics Research, Vol. 100, 285-298, 2010.
doi:10.2528/PIER09112002