Vol. 54
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-07-17
Design of Ultra-Wideband Directional Coupler Utilizing Continuous Zigzag Capacitive Compensation
By
Progress In Electromagnetics Research Letters, Vol. 54, 67-70, 2015
Abstract
A novel ultra-wideband (UWB) coupled-line coupler with an operating frequency band from 2 to 22 GHz is presented in this article. The proposed coupler is composed of six coupled-line sections. The continuous zigzag capacitive compensation (CZCC) technology is used to broaden the operation frequency band, which also significantly enhances the isolation and return losses of the coupler. The coupler is built on a multilayer circuit structure. In order to improve the design accuracy of the three-dimensional circuit structure, the combination simulation of EM simulator and circuit simulator are employed. The simulated and measured results of the UWB 10 dB asymmetric directional coupler are presented and discussed, which demonstrate that it is practical to achieve good performances in such a circuit structure.
Citation
Hongyan Li, Jun Zhu, and En Li, "Design of Ultra-Wideband Directional Coupler Utilizing Continuous Zigzag Capacitive Compensation," Progress In Electromagnetics Research Letters, Vol. 54, 67-70, 2015.
doi:10.2528/PIERL15061704
References

1. Alessandri, F., M. Dionigi, R. Racanelli, and L. Vanni, "Enhanced dual polarization directional coupler for dual polarization beam forming networks," IEEE Trans. Microwave Theory and Tech., Vol. 3, 1315-1318, Jun. 2000.

2. Cristal, E. G. and L. Young, "Theory and tables of optimum symmetrical TEM-mode coupled-transmission-line directional couplers," IEEE Trans. Microwave Theory and Tech., Vol. 13, 544-558, Sep. 1965.
doi:10.1109/TMTT.1965.1126050

3. Levy, R., "Tables for asymmetric multi-element coupled-transmission-line directional couplers," IEEE Trans. Microwave Theory and Tech., Vol. 12, 275-279, May 1964.
doi:10.1109/TMTT.1964.1125809

4. Gruszczynski, S. and K. Wincza, "Broadband multisection asymmetric 8.34-dB directional coupler with improved directivity," Proc. Asia-Pacific Microw. Conf., 1-4, Bangkok, Thailand, Dec. 2007.

5. Uysal, S. and A. H. Aghvami, "Synthesis and design of wideband symmetrical nonuniform directional couplers for MIC applications," IEEE MTT-S Int. Microw. Symp. Dig., 587-590, 1988.

6. Sheleg, B. and B. E. Spielman, "Broad-band directional couplers using microstrip with dielectric overlays," IEEE Trans. Microwave Theory and Tech., Vol. 22, 1216-122, Dec. 1974.
doi:10.1109/TMTT.1974.1128466

7. March, S. L., "Phase velocity compensation in parallel-coupled microstrip," IEEE MTT-S Int. Microw. Symp. Dig., 410-412, 1982.
doi:10.1109/MWSYM.1982.1130739

8. Podell, A. F., "A high directivity microstrip coupler technique," G-MTT Int. Microwave Symposium Dig., 33-36, 1970.

9. Cristal, E. G. and L. Young, "Theory and tables of optimum symmetrical TEM-mode coupled transmission-line directional couplers," IEEE Trans. Microwave Theory and Tech., Vol. 13, 544-558, 1965.
doi:10.1109/TMTT.1965.1126050

10. Uysal, S. and A. H. Aghvami, "Synthesis, design and construction of ultra-wide-band nonuniform quadrature directional couplers in inhomogeneous media," IEEE Trans. Microwave Theory and Tech., Vol. 37, 969-976, 1989.
doi:10.1109/22.25398

11. Aharoni, O., K. Garb, and R. Kastner, "An ultra wideband, high directivity 3 dB coupler," 2014 44th European Microwave Conference (EuMC), 2014.