1. Kobidze, G., B. Shanker, and D. P. Nyquist, "Efficient integral-equation-based method for accurate analysis of scattering from periodically arranged nanostructures," Physical Review E, Vol. 72, No. 5, 056702, Nov. 2005.
doi:10.1103/PhysRevE.72.056702 Google Scholar
2. Solís, D. M., M. G. Araújo, L. Landesa, S. García, J. M. Taboada, and F. Obelleiro, "MLFMA-MoM for solving the scattering of densely packed plasmonic nanoparticle assemblies," IEEE Photonics Journal, Vol. 7, No. 3, 4800709, Jun. 2015.
doi:10.1109/JPHOT.2015.2423283 Google Scholar
3. Valerio, G., P. Baccarelli, S. Paulotto, F. Frezza, and A. Galli, "Regularization of mixed-potential layered-media Green's functions for efficient interpolation procedures in planar periodic structures," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 1, 122-134, Jan. 2009.
doi:10.1109/TAP.2008.2009695 Google Scholar
4. Celepcikay, F. T., D. R. Wilton, and D. R. Jackson, "Interpolation of 2D layered-medium periodic Green's function," Antennas and Propagation Society International Symposium (APSURSI), Toronto, Jul. 11-17, 2010. Google Scholar
5. Wilton, D. R., D. R. Jackson, and F. T. Celepcikay, "Efficient computation of periodic, layered media Green's functions," 6th European Conference on Antennas and Propagation (EuCAP 2012), Prague, Mar. 26-30, 2012. Google Scholar
6. Celepcikay, F. T., "Efficient calculation of layered-medium periodic Green's function,", PhD Thesis, University of Houston, Houston, Texas, Aug. 2010. Google Scholar
7. Ylä-Oijala, P., M. Taskinen, and J. Sarvas, "Surface integral equation method for general composite metallic and dielectric structures with junctions," Progress In Electromagnetics Research, Vol. 52, 81-108, 2005.
doi:10.2528/PIER04071301 Google Scholar
8. Solís, D. M., J. M. Taboada, and F. Obelleiro, "Surface integral equation-method of moments with multiregion basis functions applied to plasmonics," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 5, 2141-2152, May 2015.
doi:10.1109/TAP.2015.2406891 Google Scholar
9. Dardenne, X. and C. Craeye, "Method of moments simulation of infinitely periodic structures combining metal with connected dielectric objects," IEEE Transations on Antennas and Propagation, Vol. 56, No. 8, 2372-2380, Aug. 2008.
doi:10.1109/TAP.2008.926779 Google Scholar
10. Gallinet, B., A. M. Kern, and O. J. F. Martin, "Accurate and versatile modeling of electromagnetic scattering on periodic nanostructures with a surface integral approach," Journal of the Optical Society of America A, Optics and Image Science, Vol. 27, No. 10, 2261-2271, Oct. 2010.
doi:10.1364/JOSAA.27.002261 Google Scholar
11. Jorna, P., V. Lancelotti, and M. C. van Beurden, "Formulation and implementation of boundary integral equations for scattering by doubly periodic plasmonic and dielectric structures of infinite lateral extent," International Conference on Electromagnetics in Advanced Applications (ICEAA), 1423-1426, Torino, Sep. 7-11, 2015. Google Scholar
12. Ewald, P. P., "Die berechnung optischer und elektrostatischer gitterpotentiale," Annalen der Physik IV, Vol. 64, 253-287, 1921.
doi:10.1002/andp.19213690304 Google Scholar
13. Jordan, K. E., G. R. Richter, and P. Sheng, "An efficient numerical evaluation of the Green's function for the Helmholtz operator on periodic structures," Journal of Computational Physics, Vol. 63, No. 1, 222-235, Mar. 1986.
doi:10.1016/0021-9991(86)90093-8 Google Scholar
14. Kambe, K., "Theory of electron diffraction by crystals, I. Green's function and integral equation," Z. Naturforschg., Vol. 22a, 422-431, 1967. Google Scholar
15. Stevanović, I., P. Crespo-Valero, K. Blagović, F. Bongard, and J. R. Mosig, "Integral-equation analysis of 3-D metallic objects arranged in 2-D lattices using the Ewald transformation," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 10, 3688-3697, Oct. 2006.
doi:10.1109/TMTT.2006.882876 Google Scholar
16. Li, S., D. A. van Orden, and V. Lomakin, "Fast periodic interpolation method for periodic unit cell problems," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 12, 4005-4014, Dec. 2010.
doi:10.1109/TAP.2010.2078480 Google Scholar
17. Shi, Y. and C. H. Chan, "Multilevel Green's function interpolation method for analysis of 3-D frequency selective structures using volume/surface integral equation," Journal of the Optical Society of America A, Optics and Image Science, Vol. 27, No. 2, 308-318, 2010.
doi:10.1364/JOSAA.27.000308 Google Scholar
18. Poggio, A. J. and E. K. Miller, "Integral equation solutions of three dimensional scattering problems," Computer Techniques for Electromagnetics, R. Mittra, editor, Pergamon Press, Elmsford, New York, 1973. Google Scholar
19. Chang, Y. and R. Harrington, "A surface formulation for characteristic modes of material bodies," IEEE Transactions on Antennas and Propagation, Vol. 25, No. 6, 789-795, Jun. 1977.
doi:10.1109/TAP.1977.1141685 Google Scholar
20. Wu, T. K. and L. L. Tsai, "Scattering from arbitrarily-shaped lossy dielectric bodies of revolution," Radio Science, Vol. 12, No. 5, 709-718, 1977.
doi:10.1029/RS012i005p00709 Google Scholar
21. Harrington, R. F., Field Computation by Moment Methods, Wiley-IEEE Press, 1993.
doi:10.1109/9780470544631
22. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 3, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818 Google Scholar
23. Kustepeli, A. and A. Q. Martin, "On the splitting parameter in the Ewald method," IEEE Transactions on Microwave and Guided Wave Letters, Vol. 10, No. 5, 168-170, May 2000.
doi:10.1109/75.850366 Google Scholar
24. Oroskar, S., D. R. Jackson, and D. R. Wilton, "Efficient computation of the 2D periodic Green's function using the Ewald method," Journal of Computational Physics, Vol. 219, No. 2, 899-911, Dec. 2006.
doi:10.1016/j.jcp.2006.06.050 Google Scholar
25. Celepcikay, F. T., D. R. Wilton, D. R. Jackson, and F. Capolino, "Choosing splitting parameters and summation limits in the numerical evaluation of 1-D and 2-D periodic Green's functions using the Ewald method," Radio Science, Vol. 43, RS6S01, Sep. 2008. Google Scholar
26. Stevanović, I. and J. R. Mosig, "Green's function for planar structures in periodic skewed 2-D lattices using Ewald transformation," 1st European Conference on Antennas and Propagation (EuCAP 2006), Nice, France, Nov. 6-10, 2006. Google Scholar
27. Abramowitz, M. and I. Stegun, Handbook of Mathematical Functions, Dover Publications, 1965.
28. Gautschi, W., "Efficient computation of the complex error function," SIAM J. Numer. Anal., Vol. 7, No. 1, 187-198, Mar. 1970.
doi:10.1137/0707012 Google Scholar
29. Poppe, G. P. M. and C. M. J. Wijers, "More efficient computation of the complex error function," ACM Transactions on Mathematical Software, Vol. 16, No. 1, 38-46, Mar. 1990.
doi:10.1145/77626.77629 Google Scholar
30. Zaghloul, M. R. and A. N. Ali, "Algorithm 916: Computing the Faddeyeva and Voigt functions," ACM Transactions on Mathematical Software, Vol. 38, No. 2, 1-22, Dec. 2011.
doi:10.1145/2049673.2049679 Google Scholar
31. Van Beurden, M. C., "A spectral volume integral equation method for arbitrary bi-periodic gratings with explicit Fourier factorization," Progress In Electromagnetics Research B, Vol. 36, 133-149, 2012.
doi:10.2528/PIERB11100307 Google Scholar
32. Van Beurden, M. C., "Fast convergence with spectral volume integral equation for crossed block-shaped gratings with improved material interface conditions," Journal of the Optical Society of America A, Vol. 28, No. 11, 2269-2278, 2011.
doi:10.1364/JOSAA.28.002269 Google Scholar
33. Jorna, P., V. Lancelotti, and M. C. van Beurden, "SIE approach to scattered field computation for 2D periodic diffraction gratings in 3D space consisting of high permittivity dielectric materials and plasmonic scatterers," International Conference on Electromagnetics in Advanced Applications (ICEAA), 143-146, Aruba, Aug. 3-9, 2014. Google Scholar
34. Van Kraaij, M. G. M. M., "Forward diffraction modelling: analysis and application to grating reconstruction,", PhD thesis, Eindhoven University of Technology, Mar. 2011. Google Scholar