1. Shin, C. and H. Sohn, "A frequency-space 2-D scalar wave extrapolator using extended 25-point finite difference operator," Geophysics, Vol. 63, No. 1, 289-296, 1998.
doi:10.1190/1.1444323 Google Scholar
2. Singer, I. and E. Turkel, "Sixth order accurate finite difference schemes for the Helmholtz equation," Journal of Computational Acoustics, Vol. 14, 339-351, 2006.
doi:10.1142/S0218396X06003050 Google Scholar
3. Tsukerman, I., "A class of difference schemes with flexible local approximation," Journal of Computational Physics, Vol. 211, No. 2, 659-699, 2006.
doi:10.1016/j.jcp.2005.06.011 Google Scholar
4. Fernandes, D. T. and A. F. D. Loula, "Quasi optimal finite difference method for Helmholtz problem on unstructured grids," Int. J. Numer. Meth. Engng., Vol. 82, 1244-1281, 2010. Google Scholar
5. Hadley, G. R., "High-accuracy finite-difference equations for dielectric waveguide analysis I: Uniform regions and dielectric interfaces," J. Lightwave Technol., Vol. 20, No. 5, 1210-1218, 2002.
doi:10.1109/JLT.2002.800361 Google Scholar
6. Chang, H.-W. and S.-Y. Mu, "Semi-analytical solutions of 2-D homogeneous Helmholtz equation by the method of connected local fields," Progress In Electromagnetics Research, Vol. 109, 399-424, 2010.
doi:10.2528/PIER10092807 Google Scholar
7. Chang, H.-W. and S.-Y. Mu, "Semi-analytical solutions of the 3-D homogeneous Helmholtz equation by the method of connected local fields," Progress In Electromagnetics Research, Vol. 142, 159-188, 2013.
doi:10.2528/PIER13060906 Google Scholar
8. Mu, S.-Y. and H.-W. Chang, "Theoretical foundation for the method of connected local fields," Progress In Electromagnetics Research, Vol. 114, 67-88, 2011. Google Scholar
9. Mu, S.-Y. and H.-W. Chang, "Dispersion and local-error analysis of compact LFE-27 formula for obtaining sixth-order accurate numerical solutions of 3D Helmholtz equation," Progress In Electromagnetics Research, Vol. 143, 285-314, 2013.
doi:10.2528/PIER13090103 Google Scholar
10. Chang, H.-W., Y.-H. Wu, and W.-C. Cheng, "Hybrid FD-FD analysis of crossing waveguides by exploiting both the plus and the cross structural symmetry," Progress In Electromagnetics Research, Vol. 103, 217-240, 2010.
doi:10.2528/PIER10030202 Google Scholar
11. Chang, H.-W. and Y.-H. Wu, "Analysis of perpendicular crossing dielectric waveguides with various typical index contrasts and intersection profiles," Progress In Electromagnetics Research, Vol. 108, 323-341, 2010.
doi:10.2528/PIER10081008 Google Scholar
12. Chang, H.-W., W.-C. Cheng, and S.-M. Lu, "Layer-mode transparent boundary condition for the hybrid FD-FD method," Progress In Electromagnetics Research, Vol. 94, 175-195, 2009.
doi:10.2528/PIER09061606 Google Scholar
13. Stern, M. S., "Semivectorial polarised finite difference method for optical waveguides with arbitrary index profiles," IEE Proceedings - J. Optoelectronics, Vol. 135, No. 1, 56-63, 1988.
doi:10.1049/ip-j.1988.0013 Google Scholar
14. Vassallo, C., "Improvement of finite difference methods for step-index optical waveguides," IEE Proceedings - J. Optoelectronics, Vol. 139, No. 2, 137-142, 1992.
doi:10.1049/ip-j.1992.0024 Google Scholar
15. Yamauchi, J. and J. Shibayama, "Modified finite-difference formula for the analysis of semivectorial modes in step-index optical waveguides," IEEE Photonics Technology Letters, Vol. 9, No. 5, 1997. Google Scholar
16. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House, 2005.
17. Peterson, R. and Mittra, Computational Method for Electromagnetics, IEEE Press, 1998.
18. Rao, K. R., J. Nehrbass, and R. Lee, "Discretization errors in finite methods: Issues and possible solutions," Comput. Methods Appl. Mech. Engrg., Vol. 169, 219-236, 1999.
doi:10.1016/S0045-7825(98)00155-8 Google Scholar
19. Durdević, D. Z., "Finite-difference modeling of dielectric interfaces in electromagnetics and photonics," Infoteh.-Jahorina., Vol. 9, 697-701, 2010. Google Scholar
20. Ishimaru, A., Electromagnetic Propagation, Radiation, and Scattering, Prentice Hall, 1991.
21. Chiou, Y.-P., Y.-C. Chiang, and H.-C. Chang, "Improved three-point formulas considering the interface conditions in the finite-difference analysis of step-index optical devices," J. Lightwave Technol., Vol. 18, No. 2, 2000. Google Scholar
22. Chiou, Y.-P. and C.-H. Du, "Arbitrary-order interface conditions for slab structures and their applications in waveguide analysis," Optics Express, Vol. 18, No. 3, 4088-4102, 2010.
doi:10.1364/OE.18.004088 Google Scholar
23. Chiou, Y.-P., Y.-C. Chiang, et al. "Finite-difference modeling of dielectric waveguides with corners and slanted facets," J. Lightwave Technol., Vol. 27, No. 8, 2077-2086, 2009.
doi:10.1109/JLT.2008.2006862 Google Scholar
24. Hadley, G. R., "High-accuracy finite-difference equations for dielectric waveguide analysis II: Dielectric corners," J. Lightwave Technol., Vol. 20, No. 5, 1219-1231, 2002.
doi:10.1109/JLT.2002.800371 Google Scholar
25. Chang, H.-W. and S.-Y. Mu, "Compact 2D stencils for inhomogeneous Helmholtz equation based on method of connected local fields," Computational Electromagnetics, ICCEM 2015, 215-217, 2015.
doi:10.1109/COMPEM.2015.7052610 Google Scholar