Vol. 65
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2015-12-17
PSO Algorithm of Retrieving Surface Ducts by Doppler Weather Radar Echoes
By
Progress In Electromagnetics Research B, Vol. 65, 19-33, 2016
Abstract
Doppler weather radar is an effective tool for monitoring mesoscale and small scale weather systems, quantitatively estimating precipitation and guarding against severe convective weather. The quality of the data obtained by Doppler weather radar will be seriously affected by the anomalous propagation of electromagnetic wave in tropospheric ducts. A novel method is introduced in this paper to retrieve the surface ducts, and it is based on the Principal Component Analysis (PCA) method for modeling M profile and Parabolic Equation (PE) propagation model which is a well-established technique for efficiently solving the equations for beam propagation in an inhomogeneous atmosphere. The inversion echo powers and equivalent reflectivity factor are in accordance with the measured data, which indicates that the surface ducts can be effectively retrieved by this method.
Citation
Junwang Li, Hong-Guang Wang, Zhen-Sen Wu, and Lei Li, "PSO Algorithm of Retrieving Surface Ducts by Doppler Weather Radar Echoes," Progress In Electromagnetics Research B, Vol. 65, 19-33, 2016.
doi:10.2528/PIERB15082104
References

1. Bech, J., B. Codina, and J. Lorente, "Forecasting weather radar propagation conditions," Meteorology and Atmospheric Physics, Vol. 96, No. 3-4, 229-243, 2007.
doi:10.1007/s00703-006-0211-x

2. Lakshmanan, V., A. Fritz, T. Smith, K. Hondl, and G. Stumpf, "An automated technique to quality control radar reflectivity data," Journal of Applied Meteorology and Climatology, Vol. 46, No. 3, 288-305, 2007.
doi:10.1175/JAM2460.1

3. LeFurjah, G., R. Marshall, T. S. Casey, T. Haack, and D. De Forest Boyer, "Synthesis of mesoscale numerical weather prediction and empirical site-specific radar clutter models," IET Radar, Sonar and Navigation, Vol. 4, No. 6, 747-754, 2010.
doi:10.1049/iet-rsn.2009.0145

4. Park, S. and F. Fabry, "Estimation of near-ground propagation conditions using radar ground echo coverage," Journal of Atmospheric and Oceanic Technology, Vol. 28, No. 2, 165-180, 2011.
doi:10.1175/2010JTECHA1500.1

5. Rico-Ramirez, M. A. and I. D. Cluckie, "Classification of ground clutter and anomalous propagation using dual-polarization weather radar," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 7, 1892-1904, 2008.
doi:10.1109/TGRS.2008.916979

6. Jiang, Y., L.-P. Liu, and W. Zhuang, "Statistical characteristics of clutter and improvements of ground clutter identification technique with doppler weather radar," Journal of Applied Meteorological Science, Vol. 20, No. 2, 203-213, 2009.

7. Qin, J., R.-B. Wu, Z.-G. Su, and X.-G. Lu, "Ground clutter suppression in airborne weather radar via terrain visibility analysis," Journal of Electronics & Information Technology, Vol. 34, No. 2, 351-355, 2012.

8. Villarini, G. and W. F. Krajewski, "Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall," Surveys in Geophysics, Vol. 31, No. 1, 107-129, 2010.
doi:10.1007/s10712-009-9079-x

9. Bech, J., U. Gjertsenb, and G. Haasec, "Modelling weather radar beam propagation and topographical blockage at northern high latitudes," Quarterly Journal of the Royal Meteorological Society, Vol. 133, No. 626A, 1191-1204, 2007.
doi:10.1002/qj.98

10. Roy Bhowmik, S. K., S. S. Roy, K. Srivastava, et al. "Processing of Indian Doppler Weather Radar data for mesoscale applications," Meteorology and Atmospheric Physics, Vol. 111, No. 3-4, 133-147, 2011.
doi:10.1007/s00703-010-0120-x

11. Charalampidis, D., T. Kasparis, and W. L. Jones, "Removal of nonprecipitation echoes in weather radar using multifractals and intensity," IEEE Transactions on Geoscience and Remote Sensing, Vol. 40, No. 5, 1121-1131, 2002.
doi:10.1109/TGRS.2002.1010899

12. Chen, C.-N., J.-L. Wang, C.-M. Chu, and F.-C. Lu, "Ray-trace of an abnormal radar echo using geographic information system," Defence Science Journal, Vol. 59, No. 1, 63-72, 2009.
doi:10.14429/dsj.59.1487

13. Chang, P.-L. and P.-F. Lin, "Radar anomalous propagation associated with foehn winds induced by Typhoon Krosa (2007)," Journal of Applied Meteorology and Climatology, Vol. 50, No. 7, 1527-1542, 2011.
doi:10.1175/2011JAMC2619.1

14. Cho, J. Y. N. and E. S. Chornoboy, "Multi-PRI signal processing for the terminal doppler weather radar. Part I: Clutter filtering," Journal of Atmospheric and Oceanic Technology, Vol. 22, No. 5, 575-582, 2005.
doi:10.1175/JTECH1730.1

15. Da Silveira, R. B. and A. R. Holt, "An automatic identification of clutter and anomalous propagation in polarization-diversity weather radar data using neural networks," IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 8, 1777-1788, 2001.
doi:10.1109/36.942556

16. Fornasiero, A., P. P. Alberoni, and J. Bech, "Statistical analysis and modelling of weather radar beam propagation conditions in the Po Valley (Italy)," Natural Hazards and Earth System Sciences, Vol. 6, No. 2, 303-314, 2006.
doi:10.5194/nhess-6-303-2006

17. Fornasiero, A., J. Bech, and P. P. Alberoni, "Enhanced radar precipitation estimates using a combined clutter and beam blockage correction technique," Natural Hazards and Earth System Sciences, Vol. 6, No. 5, 697-710, 2006.
doi:10.5194/nhess-6-697-2006

18. Hubbert, J. C., M. Dixon, and S. M. Ellis, "Weather radar ground clutter. Part II: Real-time identification and filtering," Journal of Atmospheric and Oceanic Technology, Vol. 26, No. 7, 1181-1197, 2009.
doi:10.1175/2009JTECHA1160.1

19. Grecu, M. and W. F. Krajewski, "Detection of anomalous propagation echoes in weather radar data using neural networks," IEEE Tran. Geosc. Remote Sens., Vol. 37, 287-296, 1999.
doi:10.1109/36.739163

20. Grecu, M. and W. F. Krajewski, "An efficient methodology for detection of anomalous propagation echoes in radar reflectivity data using neural networks," J. Atmos Oceanic Technol., Vol. 17, 121-129, 2000.
doi:10.1175/1520-0426(2000)017<0121:AEMFDO>2.0.CO;2

21. Moszkowicz, S., G. J. Ciach, and W. F. Krajewski, "Statistical detection of anomalous propagation in radar reflectivity patterns," Journal of Atmospheric and Oceanic Technology, Vol. 11, No. 4, 1026-1034, 1994.
doi:10.1175/1520-0426(1994)011<1026:SDOAPI>2.0.CO;2

22. Zhao, R. J. and G. L. Wen, "Analysis on the two cases of atmospheric duct and CINRAD/SA super-refraction echoes," Scientia Meteorologica Sinica, Vol. 30, No. 3, 393-401, 2010.

23. Berenguer, M., D. Sempere-Torres, C. Corral, et al. "A fuzzy logic technique for identifying nonprecipitating echoes in radar scans," Journal of Atmospheric and Oceanic Technology, Vol. 23, No. 9, 1157-1180, 2006.
doi:10.1175/JTECH1914.1

24. Zhang, J.-P., "Methods of retrieving tropospheric ducts above ocean surface using radar sea clutter and GPS signals,", Xidian University, Xi'an, 2012.

25. Tabrikian, J. and J. L. Krolik, "Theoretical performance limits on tropospheric refractivity estimation using point-to-point microwave measurements," IEEE Trans. Antennas Propag., Vol. 47, No. 11, 1727-1734, 1999.
doi:10.1109/8.814953

26. Barrios, A., "Estimation of surface-based duct parameters from surface clutter using a ray trace approach," Radio Sci., Vol. 39, RS6013, 2004.

27. Sengupta, N. and I. A. Glover, "Refractivity and humidity profiling using wind profiler and microwave radiometer observations for the inference of radio ducts," Proc. of URSI General Assembly, New Delhi, India, 2005.

28. Valtr, P. and P. Pechac, "Novel method of vertical refractivity profile estimation using angle of arrival spectra," Proc. of 28th General Assembly of International Union of Radio Science, New Delhi, India, 2005.

29. Cheong, B. L., R. D. Palmer, C. D. Curtis, et al. "Refractivity retrieval using the phased-array radar: first results and potential for multimission operation," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 9, 2527-2537, 2008.
doi:10.1109/TGRS.2008.919506

30. Park, S. and F. Fabry, "Estimation of near-ground propagation conditions using radar ground echo coverage," J. Atmos. Oceanic Technol., Vol. 28, No. 2, 165-180, 2011.
doi:10.1175/2010JTECHA1500.1

31. Wang, H.-G., "Method and experiment of tropospheric ducts inversion using ground-based GNSS occultation,", Xidian University, Xi'an, 2013.

32. Wang, B., "Method and experiment of tropospheric ducts inversion using radar sea clutter and GNSS,", Xidian University, Xi'an, 2011.
doi:10.1175/2010JTECHA1500.1

33. Lakshmanan, V., J. Zhang, K. Hondl, et al. "A statistical approach to mitigating persistent clutter in radar reflectivity data," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 5, No. 2, 652-662, 2012.
doi:10.1109/JSTARS.2011.2181828

34. Delrieu, G., S. Caoudal, and J. D. Creutin, "Feasibility of using mountain return for the correction of ground-based X-band weather radar data," J. Atmos. Ocean Tech., Vol. 14, 368-385, 1997.
doi:10.1175/1520-0426(1997)014<0368:FOUMRF>2.0.CO;2

35. Cheong, B. L. and R. D. Palmer, "A time series weather radar simulator based on high-resolution atmospheric models," Journal of Atmospheric and Oceanic Technology, Vol. 25, No. 2, 230-243, 2008.
doi:10.1175/2007JTECHA923.1

36. Dutta, D., S. Sharma, G. Sen, et al. "An artificial neural network based approach for estimation of rain intensity from spectral moments of a doppler weather radar," Advances in Space Research, Vol. 47, No. 11, 1949-1957, 2011.
doi:10.1016/j.asr.2011.02.002

37. Krajewski, W. F. and B. Vignal, "Evaluation of anomalous propagation echo detection in WSR-88D data: A large sample case study," Journal of Atmospheric and Oceanic Technology, Vol. 18, No. 5, 807-814, 2001.
doi:10.1175/1520-0426(2001)018<0807:EOAPED>2.0.CO;2

38. Mesnard, F. and H. Sauvageot, "Climatology of anomalous propagation radar echoes in a coastal area," Journal of Applied Meteorology and Climatology, Vol. 49, No. 11, 2285-2300, 2010.
doi:10.1175/2010JAMC2440.1

39. Pamment, J. A. and B. J. Conway, "Objective identification of echoes due to anomalous propagation in weather radar data," Journal of Atmospheric and Oceanic Technology, Vol. 15, No. 1, 98-113, 1998.
doi:10.1175/1520-0426(1998)015<0098:OIOEDT>2.0.CO;2

40. Seo, B.-C., W. F. Krajewski, A. Kruger, P. Domaszczynski, and J. A. Smith, "Matthias steiner," Journal of Hydroinformatics, Vol. 13, No. 2, 277-291, 2011.
doi:10.2166/hydro.2010.003

41. Sheikh, A. U. H., P. Z. Khan, and S. A. Al-Semari, "A study of anomalous propagation in persian gulf," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 6, 2029-2036, 2010.
doi:10.1109/TAP.2010.2044336

42. Villarini, G. and W. F. Krajewski, "Sensitivity studies of the models of radar-rainfall uncertainties," Journal of Applied Meteorology and Climatology, Vol. 49, No. 2, 288-309, 2010.
doi:10.1175/2009JAMC2188.1

43. Zhuang, X., S. Hu, F. Xu, D. Hu, and Q. Liang, "Application of an automated algorithm to remove anomalous propagation ground returns in nowcasting," Scientia Meteorologlca Sinica, Vol. 29, No. 2, 241-245, 2009.

44. Bebbington, D., S. Rae, J. Bech, B. Codina, and M. Picanyol, "Modelling of weather radar echoes from anomalous propagation using a hybrid parabolic equation method and NWP model data," Natural Hazards and Earth System Sciences, Vol. 7, No. 3, 391-398, 2007.
doi:10.5194/nhess-7-391-2007

45. Bech, J., B. Codina, J. Lorente, and D. Bebbington, "The sensitivity of single polarization weather radar beam blockage correction to variability in the vertical refractivity gradient," Journal of Atmospheric and Oceanic Technology, Vol. 20, No. 6, 845-855, 2003.
doi:10.1175/1520-0426(2003)020<0845:TSOSPW>2.0.CO;2

46. Karimian, A., C. Yardim, P. Gerstoft, W. S. Hodgkiss, and A. E. Barrios, "Refractivity estimation from sea clutter: An invited review," Radio Science, Vol. 46, 2011.
doi:10.1029/2011RS004818

47. Zhang, J.-P., "Methods of retrieving tropospheric ducts above ocean surface using radar sea clutter and GPS signals,", Xidian University, Xi'an, 2012.

48. Yang, C., L.-X. Guo, H.-Q. Li, and Z.-S. Wu, "Study the propagation characteristic of radio wave in atmospheric duct," Journal of Xidian University, Vol. 36, No. 6, 1097-1102, 2009.

49. Dong, C., L. Li, and Z.-S. Wu, "The analysis on offshore atmospheric duct with parabolic equation method," Electronic Sci. & Tech., Vol. 23, No. 11, 91-93, 99, 2010.

50. Zheng, Q., X.-W. Gong, and W.-H. Wu, "On application of particle filter combining with particle swarm optimization to refractivity estimation from radar clutter," Journal of PLA University of Science and Technology (Natural Science Edition), Vol. 14, No. 3, 322-328, 2013.

51. Yao, J.-S. and S.-X. Yang, "Practical application of the Paulus-Jeske (PJ) model to the littoral," Fire Control & Command Control, Vol. 35, No. 6, 121-124, 2010.

52. Lu, J.-Q., "Research of modeling and simulation of radar echo signal,", The PLA Information Engineering University, Zhengzhou, 2006.

53. Wang, H.-G., H. Zhang, and Z.-S. Wu, "Study of simulating anomalous ground echoes for doppler weather radar," Journal of Electronics & Information Technology, Vol. 35, No. 12, 2863-2867, 2013.
doi:10.3724/SP.J.1146.2012.01541

54. Xi, X.-Y. and H. Liu, "Research on comparison of principal component analysis with independent component analysis," Geophysical Prospecting For Petroleum, Vol. 45, No. 5, 441-446, 2006.

55. Wang, H.-G., "Method and experiment of tropospheric ducts inversion using ground-based GNSS occultation,", Xidian University, Xi'an, 2013.

56. Pan, F., Q. Zhou W.-X., Li, and Q. Gao, "Analysis of standard particle swarm optimization algorithm based on Markov chain," Acta Automatica Sinica, Vol. 39, No. 4, 381-389, 2013.
doi:10.1016/S1874-1029(13)60037-3

57. Ren, Z.-H., J. Wang, and Y.-L. Gao, "The global convergence analysis of particle swarm optimization algorithm based on Markov chain," Control Therory & Applications, Vol. 28, No. 4, 462-466, 2011.

58. Guo, H.-K., J. Wu, Z.-F. Ying, and X. Lu, "A special kind of random sequences' improved Markov chain modeling," Academic Conference of the Sixteenth National Youth Communication, 2011.

59. Zhao, J.-F. and X.-H. Chen, "Dual optimization of seismic attributes based on principle component analysis and K-L transform," Geophysical & Geochemical Exploration, Vol. 29, No. 3, 253-256, 2005.

60. Levy, M., Parabolic Equation Methods for Electromagnetic Wave Propagation, Institution of Electrical Engineers, 2000.
doi:10.1049/PBEW045E

61. Wang, H.-G., J. Han, B. Wang, and Z.-S. Wu, "Numerical modeling of atmospheric environment for microwave propagation loss prediction over the sea surface," Systems Engineering and Electronics, Vol. 34, No. 3, 457-461, 2012.