Vol. 65
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2015-12-17
PSO Algorithm of Retrieving Surface Ducts by Doppler Weather Radar Echoes
By
Progress In Electromagnetics Research B, Vol. 65, 19-33, 2016
Abstract
Doppler weather radar is an effective tool for monitoring mesoscale and small scale weather systems, quantitatively estimating precipitation and guarding against severe convective weather. The quality of the data obtained by Doppler weather radar will be seriously affected by the anomalous propagation of electromagnetic wave in tropospheric ducts. A novel method is introduced in this paper to retrieve the surface ducts, and it is based on the Principal Component Analysis (PCA) method for modeling M profile and Parabolic Equation (PE) propagation model which is a well-established technique for efficiently solving the equations for beam propagation in an inhomogeneous atmosphere. The inversion echo powers and equivalent reflectivity factor are in accordance with the measured data, which indicates that the surface ducts can be effectively retrieved by this method.
Citation
Junwang Li, Hong-Guang Wang, Zhen-Sen Wu, and Lei Li, "PSO Algorithm of Retrieving Surface Ducts by Doppler Weather Radar Echoes," Progress In Electromagnetics Research B, Vol. 65, 19-33, 2016.
doi:10.2528/PIERB15082104
References

1. Bech, J., B. Codina, and J. Lorente, "Forecasting weather radar propagation conditions," Meteorology and Atmospheric Physics, Vol. 96, No. 3-4, 229-243, 2007.
doi:10.1007/s00703-006-0211-x        Google Scholar

2. Lakshmanan, V., A. Fritz, T. Smith, K. Hondl, and G. Stumpf, "An automated technique to quality control radar reflectivity data," Journal of Applied Meteorology and Climatology, Vol. 46, No. 3, 288-305, 2007.
doi:10.1175/JAM2460.1        Google Scholar

3. LeFurjah, G., R. Marshall, T. S. Casey, T. Haack, and D. De Forest Boyer, "Synthesis of mesoscale numerical weather prediction and empirical site-specific radar clutter models," IET Radar, Sonar and Navigation, Vol. 4, No. 6, 747-754, 2010.
doi:10.1049/iet-rsn.2009.0145        Google Scholar

4. Park, S. and F. Fabry, "Estimation of near-ground propagation conditions using radar ground echo coverage," Journal of Atmospheric and Oceanic Technology, Vol. 28, No. 2, 165-180, 2011.
doi:10.1175/2010JTECHA1500.1        Google Scholar

5. Rico-Ramirez, M. A. and I. D. Cluckie, "Classification of ground clutter and anomalous propagation using dual-polarization weather radar," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 7, 1892-1904, 2008.
doi:10.1109/TGRS.2008.916979        Google Scholar

6. Jiang, Y., L.-P. Liu, and W. Zhuang, "Statistical characteristics of clutter and improvements of ground clutter identification technique with doppler weather radar," Journal of Applied Meteorological Science, Vol. 20, No. 2, 203-213, 2009.        Google Scholar

7. Qin, J., R.-B. Wu, Z.-G. Su, and X.-G. Lu, "Ground clutter suppression in airborne weather radar via terrain visibility analysis," Journal of Electronics & Information Technology, Vol. 34, No. 2, 351-355, 2012.        Google Scholar

8. Villarini, G. and W. F. Krajewski, "Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall," Surveys in Geophysics, Vol. 31, No. 1, 107-129, 2010.
doi:10.1007/s10712-009-9079-x        Google Scholar

9. Bech, J., U. Gjertsenb, and G. Haasec, "Modelling weather radar beam propagation and topographical blockage at northern high latitudes," Quarterly Journal of the Royal Meteorological Society, Vol. 133, No. 626A, 1191-1204, 2007.
doi:10.1002/qj.98        Google Scholar

10. Roy Bhowmik, S. K., S. S. Roy, K. Srivastava, et al. "Processing of Indian Doppler Weather Radar data for mesoscale applications," Meteorology and Atmospheric Physics, Vol. 111, No. 3-4, 133-147, 2011.
doi:10.1007/s00703-010-0120-x        Google Scholar

11. Charalampidis, D., T. Kasparis, and W. L. Jones, "Removal of nonprecipitation echoes in weather radar using multifractals and intensity," IEEE Transactions on Geoscience and Remote Sensing, Vol. 40, No. 5, 1121-1131, 2002.
doi:10.1109/TGRS.2002.1010899        Google Scholar

12. Chen, C.-N., J.-L. Wang, C.-M. Chu, and F.-C. Lu, "Ray-trace of an abnormal radar echo using geographic information system," Defence Science Journal, Vol. 59, No. 1, 63-72, 2009.
doi:10.14429/dsj.59.1487        Google Scholar

13. Chang, P.-L. and P.-F. Lin, "Radar anomalous propagation associated with foehn winds induced by Typhoon Krosa (2007)," Journal of Applied Meteorology and Climatology, Vol. 50, No. 7, 1527-1542, 2011.
doi:10.1175/2011JAMC2619.1        Google Scholar

14. Cho, J. Y. N. and E. S. Chornoboy, "Multi-PRI signal processing for the terminal doppler weather radar. Part I: Clutter filtering," Journal of Atmospheric and Oceanic Technology, Vol. 22, No. 5, 575-582, 2005.
doi:10.1175/JTECH1730.1        Google Scholar

15. Da Silveira, R. B. and A. R. Holt, "An automatic identification of clutter and anomalous propagation in polarization-diversity weather radar data using neural networks," IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 8, 1777-1788, 2001.
doi:10.1109/36.942556        Google Scholar

16. Fornasiero, A., P. P. Alberoni, and J. Bech, "Statistical analysis and modelling of weather radar beam propagation conditions in the Po Valley (Italy)," Natural Hazards and Earth System Sciences, Vol. 6, No. 2, 303-314, 2006.
doi:10.5194/nhess-6-303-2006        Google Scholar

17. Fornasiero, A., J. Bech, and P. P. Alberoni, "Enhanced radar precipitation estimates using a combined clutter and beam blockage correction technique," Natural Hazards and Earth System Sciences, Vol. 6, No. 5, 697-710, 2006.
doi:10.5194/nhess-6-697-2006        Google Scholar

18. Hubbert, J. C., M. Dixon, and S. M. Ellis, "Weather radar ground clutter. Part II: Real-time identification and filtering," Journal of Atmospheric and Oceanic Technology, Vol. 26, No. 7, 1181-1197, 2009.
doi:10.1175/2009JTECHA1160.1        Google Scholar

19. Grecu, M. and W. F. Krajewski, "Detection of anomalous propagation echoes in weather radar data using neural networks," IEEE Tran. Geosc. Remote Sens., Vol. 37, 287-296, 1999.
doi:10.1109/36.739163        Google Scholar

20. Grecu, M. and W. F. Krajewski, "An efficient methodology for detection of anomalous propagation echoes in radar reflectivity data using neural networks," J. Atmos Oceanic Technol., Vol. 17, 121-129, 2000.
doi:10.1175/1520-0426(2000)017<0121:AEMFDO>2.0.CO;2        Google Scholar

21. Moszkowicz, S., G. J. Ciach, and W. F. Krajewski, "Statistical detection of anomalous propagation in radar reflectivity patterns," Journal of Atmospheric and Oceanic Technology, Vol. 11, No. 4, 1026-1034, 1994.
doi:10.1175/1520-0426(1994)011<1026:SDOAPI>2.0.CO;2        Google Scholar

22. Zhao, R. J. and G. L. Wen, "Analysis on the two cases of atmospheric duct and CINRAD/SA super-refraction echoes," Scientia Meteorologica Sinica, Vol. 30, No. 3, 393-401, 2010.        Google Scholar

23. Berenguer, M., D. Sempere-Torres, C. Corral, et al. "A fuzzy logic technique for identifying nonprecipitating echoes in radar scans," Journal of Atmospheric and Oceanic Technology, Vol. 23, No. 9, 1157-1180, 2006.
doi:10.1175/JTECH1914.1        Google Scholar

24. Zhang, J.-P., "Methods of retrieving tropospheric ducts above ocean surface using radar sea clutter and GPS signals,", Xidian University, Xi'an, 2012.        Google Scholar

25. Tabrikian, J. and J. L. Krolik, "Theoretical performance limits on tropospheric refractivity estimation using point-to-point microwave measurements," IEEE Trans. Antennas Propag., Vol. 47, No. 11, 1727-1734, 1999.
doi:10.1109/8.814953        Google Scholar

26. Barrios, A., "Estimation of surface-based duct parameters from surface clutter using a ray trace approach," Radio Sci., Vol. 39, RS6013, 2004.        Google Scholar

27. Sengupta, N. and I. A. Glover, "Refractivity and humidity profiling using wind profiler and microwave radiometer observations for the inference of radio ducts," Proc. of URSI General Assembly, New Delhi, India, 2005.        Google Scholar

28. Valtr, P. and P. Pechac, "Novel method of vertical refractivity profile estimation using angle of arrival spectra," Proc. of 28th General Assembly of International Union of Radio Science, New Delhi, India, 2005.        Google Scholar

29. Cheong, B. L., R. D. Palmer, C. D. Curtis, et al. "Refractivity retrieval using the phased-array radar: first results and potential for multimission operation," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 9, 2527-2537, 2008.
doi:10.1109/TGRS.2008.919506        Google Scholar

30. Park, S. and F. Fabry, "Estimation of near-ground propagation conditions using radar ground echo coverage," J. Atmos. Oceanic Technol., Vol. 28, No. 2, 165-180, 2011.
doi:10.1175/2010JTECHA1500.1        Google Scholar

31. Wang, H.-G., "Method and experiment of tropospheric ducts inversion using ground-based GNSS occultation,", Xidian University, Xi'an, 2013.        Google Scholar

32. Wang, B., "Method and experiment of tropospheric ducts inversion using radar sea clutter and GNSS,", Xidian University, Xi'an, 2011.
doi:10.1175/2010JTECHA1500.1        Google Scholar

33. Lakshmanan, V., J. Zhang, K. Hondl, et al. "A statistical approach to mitigating persistent clutter in radar reflectivity data," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 5, No. 2, 652-662, 2012.
doi:10.1109/JSTARS.2011.2181828        Google Scholar

34. Delrieu, G., S. Caoudal, and J. D. Creutin, "Feasibility of using mountain return for the correction of ground-based X-band weather radar data," J. Atmos. Ocean Tech., Vol. 14, 368-385, 1997.
doi:10.1175/1520-0426(1997)014<0368:FOUMRF>2.0.CO;2        Google Scholar

35. Cheong, B. L. and R. D. Palmer, "A time series weather radar simulator based on high-resolution atmospheric models," Journal of Atmospheric and Oceanic Technology, Vol. 25, No. 2, 230-243, 2008.
doi:10.1175/2007JTECHA923.1        Google Scholar

36. Dutta, D., S. Sharma, G. Sen, et al. "An artificial neural network based approach for estimation of rain intensity from spectral moments of a doppler weather radar," Advances in Space Research, Vol. 47, No. 11, 1949-1957, 2011.
doi:10.1016/j.asr.2011.02.002        Google Scholar

37. Krajewski, W. F. and B. Vignal, "Evaluation of anomalous propagation echo detection in WSR-88D data: A large sample case study," Journal of Atmospheric and Oceanic Technology, Vol. 18, No. 5, 807-814, 2001.
doi:10.1175/1520-0426(2001)018<0807:EOAPED>2.0.CO;2        Google Scholar

38. Mesnard, F. and H. Sauvageot, "Climatology of anomalous propagation radar echoes in a coastal area," Journal of Applied Meteorology and Climatology, Vol. 49, No. 11, 2285-2300, 2010.
doi:10.1175/2010JAMC2440.1        Google Scholar

39. Pamment, J. A. and B. J. Conway, "Objective identification of echoes due to anomalous propagation in weather radar data," Journal of Atmospheric and Oceanic Technology, Vol. 15, No. 1, 98-113, 1998.
doi:10.1175/1520-0426(1998)015<0098:OIOEDT>2.0.CO;2        Google Scholar

40. Seo, B.-C., W. F. Krajewski, A. Kruger, P. Domaszczynski, and J. A. Smith, "Matthias steiner," Journal of Hydroinformatics, Vol. 13, No. 2, 277-291, 2011.
doi:10.2166/hydro.2010.003        Google Scholar

41. Sheikh, A. U. H., P. Z. Khan, and S. A. Al-Semari, "A study of anomalous propagation in persian gulf," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 6, 2029-2036, 2010.
doi:10.1109/TAP.2010.2044336        Google Scholar

42. Villarini, G. and W. F. Krajewski, "Sensitivity studies of the models of radar-rainfall uncertainties," Journal of Applied Meteorology and Climatology, Vol. 49, No. 2, 288-309, 2010.
doi:10.1175/2009JAMC2188.1        Google Scholar

43. Zhuang, X., S. Hu, F. Xu, D. Hu, and Q. Liang, "Application of an automated algorithm to remove anomalous propagation ground returns in nowcasting," Scientia Meteorologlca Sinica, Vol. 29, No. 2, 241-245, 2009.        Google Scholar

44. Bebbington, D., S. Rae, J. Bech, B. Codina, and M. Picanyol, "Modelling of weather radar echoes from anomalous propagation using a hybrid parabolic equation method and NWP model data," Natural Hazards and Earth System Sciences, Vol. 7, No. 3, 391-398, 2007.
doi:10.5194/nhess-7-391-2007        Google Scholar

45. Bech, J., B. Codina, J. Lorente, and D. Bebbington, "The sensitivity of single polarization weather radar beam blockage correction to variability in the vertical refractivity gradient," Journal of Atmospheric and Oceanic Technology, Vol. 20, No. 6, 845-855, 2003.
doi:10.1175/1520-0426(2003)020<0845:TSOSPW>2.0.CO;2        Google Scholar

46. Karimian, A., C. Yardim, P. Gerstoft, W. S. Hodgkiss, and A. E. Barrios, "Refractivity estimation from sea clutter: An invited review," Radio Science, Vol. 46, 2011.
doi:10.1029/2011RS004818        Google Scholar

47. Zhang, J.-P., "Methods of retrieving tropospheric ducts above ocean surface using radar sea clutter and GPS signals,", Xidian University, Xi'an, 2012.        Google Scholar

48. Yang, C., L.-X. Guo, H.-Q. Li, and Z.-S. Wu, "Study the propagation characteristic of radio wave in atmospheric duct," Journal of Xidian University, Vol. 36, No. 6, 1097-1102, 2009.        Google Scholar

49. Dong, C., L. Li, and Z.-S. Wu, "The analysis on offshore atmospheric duct with parabolic equation method," Electronic Sci. & Tech., Vol. 23, No. 11, 91-93, 99, 2010.        Google Scholar

50. Zheng, Q., X.-W. Gong, and W.-H. Wu, "On application of particle filter combining with particle swarm optimization to refractivity estimation from radar clutter," Journal of PLA University of Science and Technology (Natural Science Edition), Vol. 14, No. 3, 322-328, 2013.        Google Scholar

51. Yao, J.-S. and S.-X. Yang, "Practical application of the Paulus-Jeske (PJ) model to the littoral," Fire Control & Command Control, Vol. 35, No. 6, 121-124, 2010.        Google Scholar

52. Lu, J.-Q., "Research of modeling and simulation of radar echo signal,", The PLA Information Engineering University, Zhengzhou, 2006.        Google Scholar

53. Wang, H.-G., H. Zhang, and Z.-S. Wu, "Study of simulating anomalous ground echoes for doppler weather radar," Journal of Electronics & Information Technology, Vol. 35, No. 12, 2863-2867, 2013.
doi:10.3724/SP.J.1146.2012.01541        Google Scholar

54. Xi, X.-Y. and H. Liu, "Research on comparison of principal component analysis with independent component analysis," Geophysical Prospecting For Petroleum, Vol. 45, No. 5, 441-446, 2006.        Google Scholar

55. Wang, H.-G., "Method and experiment of tropospheric ducts inversion using ground-based GNSS occultation,", Xidian University, Xi'an, 2013.        Google Scholar

56. Pan, F., Q. Zhou W.-X., Li, and Q. Gao, "Analysis of standard particle swarm optimization algorithm based on Markov chain," Acta Automatica Sinica, Vol. 39, No. 4, 381-389, 2013.
doi:10.1016/S1874-1029(13)60037-3        Google Scholar

57. Ren, Z.-H., J. Wang, and Y.-L. Gao, "The global convergence analysis of particle swarm optimization algorithm based on Markov chain," Control Therory & Applications, Vol. 28, No. 4, 462-466, 2011.        Google Scholar

58. Guo, H.-K., J. Wu, Z.-F. Ying, and X. Lu, "A special kind of random sequences' improved Markov chain modeling," Academic Conference of the Sixteenth National Youth Communication, 2011.        Google Scholar

59. Zhao, J.-F. and X.-H. Chen, "Dual optimization of seismic attributes based on principle component analysis and K-L transform," Geophysical & Geochemical Exploration, Vol. 29, No. 3, 253-256, 2005.        Google Scholar

60. Levy, M., Parabolic Equation Methods for Electromagnetic Wave Propagation, Institution of Electrical Engineers, 2000.
doi:10.1049/PBEW045E

61. Wang, H.-G., J. Han, B. Wang, and Z.-S. Wu, "Numerical modeling of atmospheric environment for microwave propagation loss prediction over the sea surface," Systems Engineering and Electronics, Vol. 34, No. 3, 457-461, 2012.        Google Scholar