Vol. 65
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-01-02
An Iterative Shrinkage Deconvolution for Angular Superresolution Imaging in Forward-Looking Scanning Radar
By
Progress In Electromagnetics Research B, Vol. 65, 35-48, 2016
Abstract
The aim of angular super-resolution is to surpass the real-beam resolution. In this paper, a method for forward-looking scanning radar angular super-resolution imaging through a deconvolution method is proposed, which incorporates the prior information of the target's scattering characteristics. We first mathematically formulate the angular super-resolution problem of forward-looking scanning radar as a maximum a posteriori (MAP) estimation task based on the forward model, and convert it to an equivalent unconstrained optimization problem by applying the log-transforms to the posterior probability, which guarantees the solution converges to a global optimum of an associated MAP problem and it is easy to implement. We then implement the unconstrained optimization task in convex optimization framework using an iterative shrinkage method, and the computational complexity of the proposed algorithm is also discussed. Since the anti log-likelihood of the noise distribution and the prior knowledge of the scene are utilized, the proposed method is able to achieve angular super-resolution imaging in forward-looking scanning radar effectively. Numerical simulations and experimental results based on real data are presented to verify that the proposed deconvolution algorithm has better performance in preserving angular super-resolution accuracy and suppressing the noise amplification.
Citation
Yuebo Zha, Yulin Huang, and Jianyu Yang, "An Iterative Shrinkage Deconvolution for Angular Superresolution Imaging in Forward-Looking Scanning Radar," Progress In Electromagnetics Research B, Vol. 65, 35-48, 2016.
doi:10.2528/PIERB15100501
References

1. Richards, M. A., J. Scheer, and W. A. Holm, Principles of Modern Radar: Basic Principles, SciTech Pub., 2010.
doi:10.1049/SBRA021E

2. Ramani, S. and J. A. Fessler, "A splitting-based iterative algorithm for accelerated statistical X-ray CT reconstruction," IEEE Transactions on Medical Imaging, Vol. 31, No. 3, 677-688, 2012.
doi:10.1109/TMI.2011.2175233

3. Yildirim, S., A. Cemgil, M. Aktar, Y. Ozakin, and A. Ertuzun, "A Bayesian deconvolution approach for receiver function analysis," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 12, 4151-4163, 2010.
doi:10.1109/TGRS.2010.2050327

4. Soussen, C., J. Idier, D. Brie, and J. Duan, "From Bernoulli-Gaussian deconvolution to sparse signal restoration," IEEE Transactions on Signal Processing, Vol. 59, No. 10, 4572-4584, 2011.
doi:10.1109/TSP.2011.2160633

5. Dickey, F., L. Romero, J. DeLaurentis, and A. Doerry, "Super-resolution, degrees of freedom and synthetic aperture radar," IEE Proceedings - Radar, Sonar and Navigation, Vol. 150, No. 6, 419-429, 2003.
doi:10.1049/ip-rsn:20030701

6. Zha, Y., Y. Huang, and J. Yang, "Augmented lagrangian method for angular super-resolution imaging in forward-looking scanning radar," Journal of Applied Remote Sensing, Vol. 9, No. 1, 096055-096055, 2015.
doi:10.1117/1.JRS.9.096055

7. Zha, Y., Y. Huang, Z. Sun, Y. Wang, and J. Yang, "Bayesian deconvolution for angular super-resolution in forward-looking scanning radar," Sensors, Vol. 15, No. 3, 6924-6946, 2015.
doi:10.3390/s150306924

8. Tello Alonso, M., P. López-Dekker, and J. J. Mallorquí, "A novel strategy for radar imaging based on compressive sensing," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 12, 4285-4295, 2010.
doi:10.1109/TGRS.2010.2051231

9. Gambardella, A. and M. Migliaccio, "On the superresolution of microwave scanning radiometer measurements," IEEE Geoscience and Remote Sensing Letters, Vol. 5, No. 4, 796-800, 2008.
doi:10.1109/LGRS.2008.2006285

10. Uttam, S. and N. A. Goodman, "Superresolution of coherent sources in real-beam data," IEEE Transactions on Aerospace and Electronic Systems, Vol. 46, No. 3, 1557-1566, 2010.
doi:10.1109/TAES.2010.5545210

11. Sundareshan, M. K. and S. Bhattacharjee, "Enhanced iterative processing algorithms for restoration and superresolution of tactical sensor imagery," Optical Engineering, Vol. 43, No. 1, 199-208, 2004.
doi:10.1117/1.1626665

12. Lohner, A., "Improved azimuthal resolution of forward looking SAR by sophisticated antenna illumination function design," IEE Proceedings - Radar, Sonar and Navigation, 128-134, IET, 1998.
doi:10.1049/ip-rsn:19981731

13. Xu, Z., X. Chang, F. Xu, and H. Zhang, "L1/2 regularization: A thresholding representation theory and a fast solver," IEEE Transactions on Neural Networks and Learning Systems, Vol. 23, No. 7, 1013-1027, 2012.
doi:10.1109/TNNLS.2012.2197412

14. Ramani, S., Z. Liu, J. Rosen, J. Nielsen, and J. A. Fessler, "Regularization parameter selection for nonlinear iterative image restoration and MRI reconstruction using GCV and SURE-based methods," IEEE Transactions on Image Processing, Vol. 21, No. 8, 3659-3672, 2012.
doi:10.1109/TIP.2012.2195015

15. Babacan, S. D., R. Molina, and A. K. Katsaggelos, "Variational Bayesian super resolution," IEEE Transactions on Image Processing, Vol. 20, No. 4, 984-999, 2011.
doi:10.1109/TIP.2010.2080278

16. Lane, R., "Non-parametric Bayesian super-resolution," IET Radar, Sonar and Navigation, Vol. 4, No. 4, 639-648, 2010.
doi:10.1049/iet-rsn.2009.0094

17. Richardson, W. H., "Bayesian-based iterative method of image restoration," JOSA, Vol. 62, No. 1, 55-59, 1972.
doi:10.1364/JOSA.62.000055

18. Lucy, L., "An iterative technique for the rectification of observed distributions," The Astronomical Journal, Vol. 79, 745, 1974.
doi:10.1086/111605

19. White, R. L., "Image restoration using the damped Richardson-Lucy method," The Restoration of HST Images and Spectra II, 104-110, 1994.

20. Mohammad-Djafari, A., "Bayesian approach for inverse problems in optical coherent and noncoherent imaging," SPIE's 48th Annual Meeting on Optical Science and Technology, 209-218, International Society for Optics and Photonics, 2003.

21. Beck, A. and M. Teboulle, "A fast iterative shrinkage-thresholding algorithm for linear inverse problems," SIAM Journal on Imaging Sciences, Vol. 2, No. 1, 183-202, 2009.
doi:10.1137/080716542

22. Figueiredo, M. A. and R. D. Nowak, "An EM algorithm for wavelet-based image restoration," IEEE Transactions on Image Processing, Vol. 12, No. 8, 906-916, 2003.
doi:10.1109/TIP.2003.814255

23. Bioucas-Dias, J. M. and M. A. Figueiredo, "A new twist: Two-step iterative shrinkage/thresholding algorithms for image restoration," IEEE Transactions on Image Processing, Vol. 16, No. 12, 2992-3004, 2007.
doi:10.1109/TIP.2007.909319

24. Combettes, P. L. and V. R. Wajs, "Signal recovery by proximal forward-backward splitting," Multiscale Modeling & Simulation, Vol. 4, No. 4, 1168-1200, 2005.
doi:10.1137/050626090

25. Samadi, S., M. Çetin, and M. A. Masnadi-Shirazi, "Sparse representation-based synthetic aperture radar imaging," IET Radar, Sonar and Navigation, Vol. 5, No. 2, 182-193, 2011.
doi:10.1049/iet-rsn.2009.0235

26. Donoho, D. L., "De-noising by soft-thresholding," IEEE Transactions on Information Theory, Vol. 41, No. 3, 613-627, 1995.
doi:10.1109/18.382009

27. Karl, W. C., Regularization in Image Restoration and Reconstruction, Elsevier, 2005.

28. Hansen, P. C., "Analysis of discrete ill-posed problems by means of the L-curve," SIAM Review, Vol. 34, No. 4, 561-580, 1992.
doi:10.1137/1034115

29. Zhang, Y., R. Li, and C. L. Tsai, "Regularization parameter selections via generalized information criterion," Journal of the American Statistical Association, Vol. 105, No. 489, 312-323, 2010.
doi:10.1198/jasa.2009.tm08013

30. Sourbron, S., R. Luypaert, P. Van Schuerbeek, M. Dujardin, and T. Stadnik, "Choice of the regularization parameter for perfusion quantification with MRI," Physics in Medicine and Biology, Vol. 49, No. 14, 3307, 2004.
doi:10.1088/0031-9155/49/14/020

31. Huang, Y., M. K. Ng, and Y. W. Wen, "A fast total variation minimization method for image restoration," Multiscale Modeling & Simulation, Vol. 7, No. 2, 774-795, 2008.
doi:10.1137/070703533

32. Figueiredo, M. A. and J. M. Bioucas-Dias, "Restoration of Poissonian images using alternating direction optimization," IEEE Transactions on Image Processing, Vol. 19, No. 12, 3133-3145, 2010.
doi:10.1109/TIP.2010.2053941

33. Li, W., J. Yang, and Y. Huang, "Keystone transform-based space-variant range migration correction for airborne forward-looking scanning radar," Electronics Letters, Vol. 48, No. 2, 121-122, 2012.
doi:10.1049/el.2011.2774