1. Richards, M. A., J. Scheer, and W. A. Holm, Principles of Modern Radar: Basic Principles, SciTech Pub., 2010.
doi:10.1049/SBRA021E
2. Ramani, S. and J. A. Fessler, "A splitting-based iterative algorithm for accelerated statistical X-ray CT reconstruction," IEEE Transactions on Medical Imaging, Vol. 31, No. 3, 677-688, 2012.
doi:10.1109/TMI.2011.2175233 Google Scholar
3. Yildirim, S., A. Cemgil, M. Aktar, Y. Ozakin, and A. Ertuzun, "A Bayesian deconvolution approach for receiver function analysis," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 12, 4151-4163, 2010.
doi:10.1109/TGRS.2010.2050327 Google Scholar
4. Soussen, C., J. Idier, D. Brie, and J. Duan, "From Bernoulli-Gaussian deconvolution to sparse signal restoration," IEEE Transactions on Signal Processing, Vol. 59, No. 10, 4572-4584, 2011.
doi:10.1109/TSP.2011.2160633 Google Scholar
5. Dickey, F., L. Romero, J. DeLaurentis, and A. Doerry, "Super-resolution, degrees of freedom and synthetic aperture radar," IEE Proceedings - Radar, Sonar and Navigation, Vol. 150, No. 6, 419-429, 2003.
doi:10.1049/ip-rsn:20030701 Google Scholar
6. Zha, Y., Y. Huang, and J. Yang, "Augmented lagrangian method for angular super-resolution imaging in forward-looking scanning radar," Journal of Applied Remote Sensing, Vol. 9, No. 1, 096055-096055, 2015.
doi:10.1117/1.JRS.9.096055 Google Scholar
7. Zha, Y., Y. Huang, Z. Sun, Y. Wang, and J. Yang, "Bayesian deconvolution for angular super-resolution in forward-looking scanning radar," Sensors, Vol. 15, No. 3, 6924-6946, 2015.
doi:10.3390/s150306924 Google Scholar
8. Tello Alonso, M., P. López-Dekker, and J. J. Mallorquí, "A novel strategy for radar imaging based on compressive sensing," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 12, 4285-4295, 2010.
doi:10.1109/TGRS.2010.2051231 Google Scholar
9. Gambardella, A. and M. Migliaccio, "On the superresolution of microwave scanning radiometer measurements," IEEE Geoscience and Remote Sensing Letters, Vol. 5, No. 4, 796-800, 2008.
doi:10.1109/LGRS.2008.2006285 Google Scholar
10. Uttam, S. and N. A. Goodman, "Superresolution of coherent sources in real-beam data," IEEE Transactions on Aerospace and Electronic Systems, Vol. 46, No. 3, 1557-1566, 2010.
doi:10.1109/TAES.2010.5545210 Google Scholar
11. Sundareshan, M. K. and S. Bhattacharjee, "Enhanced iterative processing algorithms for restoration and superresolution of tactical sensor imagery," Optical Engineering, Vol. 43, No. 1, 199-208, 2004.
doi:10.1117/1.1626665 Google Scholar
12. Lohner, A., "Improved azimuthal resolution of forward looking SAR by sophisticated antenna illumination function design," IEE Proceedings - Radar, Sonar and Navigation, 128-134, IET, 1998.
doi:10.1049/ip-rsn:19981731 Google Scholar
13. Xu, Z., X. Chang, F. Xu, and H. Zhang, "L1/2 regularization: A thresholding representation theory and a fast solver," IEEE Transactions on Neural Networks and Learning Systems, Vol. 23, No. 7, 1013-1027, 2012.
doi:10.1109/TNNLS.2012.2197412 Google Scholar
14. Ramani, S., Z. Liu, J. Rosen, J. Nielsen, and J. A. Fessler, "Regularization parameter selection for nonlinear iterative image restoration and MRI reconstruction using GCV and SURE-based methods," IEEE Transactions on Image Processing, Vol. 21, No. 8, 3659-3672, 2012.
doi:10.1109/TIP.2012.2195015 Google Scholar
15. Babacan, S. D., R. Molina, and A. K. Katsaggelos, "Variational Bayesian super resolution," IEEE Transactions on Image Processing, Vol. 20, No. 4, 984-999, 2011.
doi:10.1109/TIP.2010.2080278 Google Scholar
16. Lane, R., "Non-parametric Bayesian super-resolution," IET Radar, Sonar and Navigation, Vol. 4, No. 4, 639-648, 2010.
doi:10.1049/iet-rsn.2009.0094 Google Scholar
17. Richardson, W. H., "Bayesian-based iterative method of image restoration," JOSA, Vol. 62, No. 1, 55-59, 1972.
doi:10.1364/JOSA.62.000055 Google Scholar
18. Lucy, L., "An iterative technique for the rectification of observed distributions," The Astronomical Journal, Vol. 79, 745, 1974.
doi:10.1086/111605 Google Scholar
19. White, R. L., "Image restoration using the damped Richardson-Lucy method," The Restoration of HST Images and Spectra II, 104-110, 1994. Google Scholar
20. Mohammad-Djafari, A., "Bayesian approach for inverse problems in optical coherent and noncoherent imaging," SPIE's 48th Annual Meeting on Optical Science and Technology, 209-218, International Society for Optics and Photonics, 2003. Google Scholar
21. Beck, A. and M. Teboulle, "A fast iterative shrinkage-thresholding algorithm for linear inverse problems," SIAM Journal on Imaging Sciences, Vol. 2, No. 1, 183-202, 2009.
doi:10.1137/080716542 Google Scholar
22. Figueiredo, M. A. and R. D. Nowak, "An EM algorithm for wavelet-based image restoration," IEEE Transactions on Image Processing, Vol. 12, No. 8, 906-916, 2003.
doi:10.1109/TIP.2003.814255 Google Scholar
23. Bioucas-Dias, J. M. and M. A. Figueiredo, "A new twist: Two-step iterative shrinkage/thresholding algorithms for image restoration," IEEE Transactions on Image Processing, Vol. 16, No. 12, 2992-3004, 2007.
doi:10.1109/TIP.2007.909319 Google Scholar
24. Combettes, P. L. and V. R. Wajs, "Signal recovery by proximal forward-backward splitting," Multiscale Modeling & Simulation, Vol. 4, No. 4, 1168-1200, 2005.
doi:10.1137/050626090 Google Scholar
25. Samadi, S., M. Çetin, and M. A. Masnadi-Shirazi, "Sparse representation-based synthetic aperture radar imaging," IET Radar, Sonar and Navigation, Vol. 5, No. 2, 182-193, 2011.
doi:10.1049/iet-rsn.2009.0235 Google Scholar
26. Donoho, D. L., "De-noising by soft-thresholding," IEEE Transactions on Information Theory, Vol. 41, No. 3, 613-627, 1995.
doi:10.1109/18.382009 Google Scholar
27. Karl, W. C., Regularization in Image Restoration and Reconstruction, Elsevier, 2005.
28. Hansen, P. C., "Analysis of discrete ill-posed problems by means of the L-curve," SIAM Review, Vol. 34, No. 4, 561-580, 1992.
doi:10.1137/1034115 Google Scholar
29. Zhang, Y., R. Li, and C. L. Tsai, "Regularization parameter selections via generalized information criterion," Journal of the American Statistical Association, Vol. 105, No. 489, 312-323, 2010.
doi:10.1198/jasa.2009.tm08013 Google Scholar
30. Sourbron, S., R. Luypaert, P. Van Schuerbeek, M. Dujardin, and T. Stadnik, "Choice of the regularization parameter for perfusion quantification with MRI," Physics in Medicine and Biology, Vol. 49, No. 14, 3307, 2004.
doi:10.1088/0031-9155/49/14/020 Google Scholar
31. Huang, Y., M. K. Ng, and Y. W. Wen, "A fast total variation minimization method for image restoration," Multiscale Modeling & Simulation, Vol. 7, No. 2, 774-795, 2008.
doi:10.1137/070703533 Google Scholar
32. Figueiredo, M. A. and J. M. Bioucas-Dias, "Restoration of Poissonian images using alternating direction optimization," IEEE Transactions on Image Processing, Vol. 19, No. 12, 3133-3145, 2010.
doi:10.1109/TIP.2010.2053941 Google Scholar
33. Li, W., J. Yang, and Y. Huang, "Keystone transform-based space-variant range migration correction for airborne forward-looking scanning radar," Electronics Letters, Vol. 48, No. 2, 121-122, 2012.
doi:10.1049/el.2011.2774 Google Scholar