Vol. 58
Latest Volume
All Volumes
PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-01-29
Optically Transparent Compact 4×4 Butler Matrix for Wi-Fi Applications
By
Progress In Electromagnetics Research Letters, Vol. 58, 119-124, 2016
Abstract
In this paper, an optically transparent (OT) compact 4×4 Butler matrix (BM) operating at 2.4 GHz for Wi-Fi applications is proposed. The device has structured grids refined in quadrilateral cell shapes. The dimensions of cells are chosen based on a simple formulawhich guarantees a minimum required transparency levelin conjunction with a limited rounds of optimizations. A theoretical optical transparency value of 76.2% has been obtained without affecting the excellent electrical performance of the BM. Moreover, complimentary square split ring resonators (CS-SRRs) are patterned in the ground plane of each transparent transmission line in the BM. This loading technique provides a relative size reduction of 16.6% compared to a conventional structure. Simulated and measured results of the proposed design agree well with conventional BM's results. The proposed technique and its related features can be expanded to other microwave devices.
Citation
Ousama Abu Safia, Mourad Nedil, Mustapha Yagoub, and Walid Yusuf, "Optically Transparent Compact 4×4 Butler Matrix for Wi-Fi Applications," Progress In Electromagnetics Research Letters, Vol. 58, 119-124, 2016.
doi:10.2528/PIERL15101004
References

1. Tseng, C.-H., C.-J. Chen, and T.-H. Chu, "A low-cost 60-GHz switched-beam patch antenna array with butler matrix network," IEEE Antennas and Wireless Propagation Lett., Vol. 7, 432-435, 2008.
doi:10.1109/LAWP.2008.2001849

2. Chang, C.-C., R.-H. Lee, and T.-Y. Shih, "Design of a beam switching/steering butler matrix for phased array system," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 367-374, Feb. 2010.
doi:10.1109/TAP.2009.2037693

3. Gandini, E., M. Ettorre, R. Sauleau, and A. Grbic, "A lumped-element unit cell for beam-forming networks and its application to a miniaturized butler matrix," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 4, 1477-1487, Apr. 2013.
doi:10.1109/TMTT.2013.2248744

4. Bona, M., L. Manholm, J. P. Starski, and B. Svensson, "Low-loss compact Butler matrix for a microstrip antenna," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, 2069-2075, Sept. 2002.
doi:10.1109/TMTT.2002.802318

5. Wang, C.-W., T.-G. Ma, and C.-F. Yang, "A new planar artificial transmission line and its applications to a miniaturized butler matrix," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 12, 2792-2801, Dec. 2007.
doi:10.1109/TMTT.2007.909474

6. Denidni, T. A. and T. E. Libar, "Wide band four-port butler matrix for switched multibeam antenna arrays," 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications 2003, PIMRC 2003, Vol. 3, 2461-2464, Sept. 7-10, 2003.

7. Abu Safia, O., L. Talbi, and K. Hettak, "A new type of transmission line-based metamaterial resonator and its implementation in original applications," IEEE Trans. on Magnetics, Vol. 49, 968-973, Mar. 2013.
doi:10.1109/TMAG.2012.2230248

8. Abu Safia, O., "Development of new types of transmission line-based metamaterial inclusions/cells and their applications,", doctoral dissertation, University of Quebec, Gatineau, QC, Canada, Sept. 2014.

9. Hautcoeur, J., X. Castel, F. Colombel, R. Benzerga, M. Himdi, G. Legeay, and E. Motta Cruz, "Transparency and electrical properties of meshed metal films," Thin Solid Films, Vol. 519, 3851-3858, 2011.
doi:10.1016/j.tsf.2011.01.262

10. Hautcoeur, J., F. Colombel, X. Castel, M. Himdi, and E. Motta Cruz, "Optically transparent monopole antenna with high radiation efficiency manufactured with silver grid layer (AgGL)," Electronics Letters, Vol. 45, No. 20, 1014-1016, Sept. 2009.
doi:10.1049/el.2009.1218

11. Lee, E. N., R. Hall, G. Katulka, K. Duncan, E. Barry, P. Pa, M. Mirotznick, P. Patel, and L. Holmes, "Modeling, simulation, and measurement of a transparent armor embedded meshed microstrip antenna," 2012 IEEE Antennas and Propagation Society International Symposium (APSURSI), 1-2, Jul. 8-14, 2012.

12. Hautcoeur, J., L. Talbi, K. Hettak, and M. Nedil, "60 GHz optically transparent microstrip antenna made of meshed AuGL material," IET Microwaves, Antennas & Propagation, Vol. 8, 1091-1096, Oct. 2014.

13. Colombel, F., X. Castel, M. Himdi, G. Legeay, S. Vigneron, and E. M. Cruz, "Ultrathin metal layer, ITO film and ITO/Cu/ITO multilayer towards transparent antenna," IET Sci., Meas. Technol., Vol. 3, No. 3, 229-234, May 2009.
doi:10.1049/iet-smt:20080060

14. Saha, C., J. Y. Siddiqui, and Y. M. M. Antar, "Square split ring resonator backed coplanar waveguide for filter applications," 2011 XXXth URSI General Assembly and Scientific Symposium, 1-4, Aug. 13-20, 2011.