Vol. 58
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-02-12
A Novel Bandpass Filter with Controllable Transmission Zeros
By
Progress In Electromagnetics Research Letters, Vol. 58, 141-147, 2016
Abstract
A planar bandpass filter is proposed in this paper. Its stopband is realized by using the concept of bandstop filter. A key merit of the filter configuration is that the position of the transmission zeros can be conveniently controlled whereas the bandwidth is fixed. The bandpass filter is realized using open circuited uniform impedance resonator and stepped impedance resonators. With five reflection zeros generated in the passband, ten controllable transmission zeros are introduced to sharpen the passband skirts. Skirt selectivity can be freely controlled by tuning the impedance ratio of the stepped impedance resonators. Without coupling gaps between resonators, the structure of the filter is simple and easy to fabricate. To illustrate the concept, a bandpass filter with ten transmission zeros is designed, fabricated and measured. Simulated and measured results are found to be in good agreement with each other, with insertion loss in the passbands less than 1 dB.
Citation
Yun Wang, Fu-Chang Chen, and Qing-Xin Chu, "A Novel Bandpass Filter with Controllable Transmission Zeros," Progress In Electromagnetics Research Letters, Vol. 58, 141-147, 2016.
doi:10.2528/PIERL15101301
References

1. Deng, P.-H., C.-H. Wang, and C.-H. Chen, "Novel broadside-coupled bandpass filters using both microstrip and coplanar-waveguide resonators," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 10, 3746-3750, Oct. 2006.
doi:10.1109/TMTT.2006.881619

2. Liang, C.-H. and C.-Y. Chang, "Compact wideband bandpass filters using stepped-impedance resonators and interdigital coupling structures," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 9, 551-553, Sep. 2009.
doi:10.1109/LMWC.2009.2027060

3. Shaman, H. and J.-S. Hong, "A novel ultra-wideband (UWB) bandpass filter (BPF) with pairs of transmission zeros," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 2, 121-123, Feb. 2007.
doi:10.1109/LMWC.2006.890335

4. Wang, H. and Q.-X. Chu, "A narrow-band hairpin-comb two-pole filter with source-load coupling," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 7, 372-374, Jul. 2010.
doi:10.1109/LMWC.2010.2049426

5. Chiang, C.-P. and K.-W. Tam, "Compact quasi-elliptic microstrip bandpass filter using terminated anti-parallel coupled-line," IET Proc. Microw. Antenna Propag., Vol. 3, 1206-1210, 2009.
doi:10.1049/iet-map.2008.0285

6. Li, J.-Y., C.-H. Chi, and C.-Y. Chang, "Synthesis and design of generalized Chebyshev wideband hybrid ring based bandpass filters with a controllable transmission zero pair," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 12, 3720-3731, Dec. 2010.

7. Li, L. and Z.-F. Li, "Side-coupled shorted microstrip line for compact quasi-elliptic wideband bandpass filter design," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 6, 322-324, Jun. 2010.
doi:10.1109/LMWC.2010.2047516

8. Shaman, H. and J.-S. Hong, "Input and output cross-coupled wideband bandpass filter," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 12, 2562-2568, Dec. 2007.
doi:10.1109/TMTT.2007.910066

9. Hsieh, L.-H. and K. Chang, "Compact, low insertion-loss, sharp-rejection, and wideband microstrip bandpass filters," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 4, 1241-1246, Apr. 2003.
doi:10.1109/TMTT.2003.809643

10. Gómez-García, R. and J. I. Alonso, "Design of sharp-rejection and low-loss wideband planar filters using signal-interference techniques," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 8, 530-532, Aug. 2005.
doi:10.1109/LMWC.2005.852797

11. Tu, W.-H., "Broadband microstrip bandpass filters using triple-mode resonator," IET Proc. Microw. Antenna Propag., Vol. 4, 1275-1282, 2010.
doi:10.1049/iet-map.2009.0106

12. Chen, F. C., J. M. Qiu, Z. H. Chen, and Q. X. Chu, "Low insertion loss wideband bandpass filter with six transmission zeros," Electron. Lett., Vol. 49, No. 7, 477-479, Mar. 2013.
doi:10.1049/el.2013.0655

13. Mandal, M. K., P. Mondal, and S. Sanyal, "Low insertion loss, wideband bandpass filters with sharp rejection characteristics," IET Proc. Microw. Antenna Propag., Vol. 4, 99-105, 2010.
doi:10.1049/iet-map.2008.0161

14. Velidi, V. K., A. B. Guntupalli, and S. Sanyal, "Sharp-rejection ultra-wide bandstop filters," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 8, 503-505, Aug. 2009.
doi:10.1109/LMWC.2009.2024834

15. Malherbe, J. A. G., "Wideband bandstop filter with sub-harmonic stubs," Electron. Lett., Vol. 47, No. 10, 604-605, May 2011.
doi:10.1049/el.2011.0604

16. Malherbe, J. A. G., "Pseudo-elliptic bandstop filter with 1 : 2 : 3 harmonic ratio stubs," Electron. Lett., Vol. 49, No. 2, 130-132, Jan. 2013.
doi:10.1049/el.2012.3695

17. Pozar, D. M., Microwave Engineering, 2nd Ed., Wiley, 1998.