1. Griffiths, H., "Magnetic induction tomography," Measurement Science and Technology, Vol. 12, 1126-1131, 2001.
doi:10.1088/0957-0233/12/8/319 Google Scholar
2. Griffiths, H., W. R. Stewart, and W. Gough, "Magnetic induction tomography: A measuring system for biological tissues," Annals of the New York Academy of Sciences, Vol. 873, 335-345, 1999.
doi:10.1111/j.1749-6632.1999.tb09481.x Google Scholar
3. Otten, D. M. and B. Rubinsky, "Cryosurgical monitoring using bioimpedance measurements - A feasibility study for electrical impedance tomography," IEEE Transactions on Biomedical Engineering, Vol. 47, No. 10, 1376-1381, 2000.
doi:10.1109/10.871411 Google Scholar
4. Soleimani, M., O. Dorn, and W. R. B. Lionheart, "A narrow-band level set method applied to eit in brain for cryosurgery monitoring," IEEE Transactions on Biomedical Engineering, Vol. 53, No. 11, 2257-2264, 2006.
doi:10.1109/TBME.2006.877112 Google Scholar
5. Zlochiver, S., M. M. Radai, M. Rosenfeld, and S. Abboud, "Induced current impedance technique for monitoring brain cryosurgery in a two-dimensional model of the head," Annals of Biomedical Engineering, Vol. 30, 1172-1180, 2002.
doi:10.1114/1.1521932 Google Scholar
6. Zlochiver, S., M. Rosenfeld, and S. Abboud, "Contactless bio-impedance monitoring technique for brain cryosurgery in a 3D head model," Annals of Biomedical Engineering, Vol. 33, No. 5, 616-625, 2005.
doi:10.1007/s10439-005-1639-8 Google Scholar
7. Ma, L., H.-Y. Wei, and M. Soleimani, "Cryosurgical monitoring using electromagnetic measurements: A feasibility study for magnetic induction tomography," 13th International Conference in Electrical Impedance Tomography, 2012-05-23-2012-05-25, Tianjin University, Tianjin, 2012. Google Scholar
8. Gabriel, C., A. Peyman, and E. H. Grant, "Electrical conductivity of tissues at frequencies below 1 MHz," Physics in Medicine and Biology, Vol. 54, No. 16, 4863-4878, 2009.
doi:10.1088/0031-9155/54/16/002 Google Scholar
9. Gencer, N. G. and M. N. Tek, "Imaging tissue conductivity via contactless measurements: A feasibility study," Elektrik, Vol. 6, No. 3, 183-200, 1998. Google Scholar
10. Bagshaw, A. P., A. D. Liston, R. H. Bayford, A. Tizzard, A. P. Gibson, A. T. Tidswell, M. K. Sparkes, H. Dehghani, C. D. Binnie, and D. S. Holder, "Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method," Neuro Image, Vol. 20, No. 2, 752-764, 2003. Google Scholar
11. Hwu, W.-M. W., GPU Computing Gems, Emerald Ed., Morgan Kaufmann, 2011.
12. Steuwer, M. and S. Gorlatch, "High-level programming for medical imaging on multi-GPU systems using the skelcl library," 2013 International Conference on Computational Science, Vol. 18, 749-758, 2013. Google Scholar
13. Shi, L., W. Liu, H. Zhang, Y. Xie, and D. Wang, "A survey of gpu-based medical image computing techniques," Quantitative Imaging in Medicine and Surgery, Vol. 2, No. 3, 188-206, 2012. Google Scholar
14. Borsic, A., E. A. Attardo, and R. J. Halter, "Multi-GPU jacobian accelerated computing for soft field tomography," Physiological Measurements, Vol. 33, 1703-1715, 2012.
doi:10.1088/0967-3334/33/10/1703 Google Scholar
15. Eklund, A., P. Dufort, D. Forsberg, and S. M. LaConte, "Medical image processing on the GPU: Past, present and future," Medical Image Analysis, Vol. 17, No. 8, 1073-1094, 2013.
doi:10.1016/j.media.2013.05.008 Google Scholar
16. Jia, X., B. Dong, Y. F. Lou, and S. B. Jiang, "GPU-based iterative cone-beam CT reconstruction using tight frame regularization," Physics in Medicine and Biology, Vol. 56, No. 13, 3787, 2011.
doi:10.1088/0031-9155/56/13/004 Google Scholar
17. Tavares, R. S., T. C. Martins, and M. S. G. Tsuzuki, "Electrical impedance tomography reconstruction through simulated annealing using a new outside-in heuristic and GPU parallelization," Journal of Physics Conference Series, Vol. 407(Conference 1), 012015, 2012.
doi:10.1088/1742-6596/407/1/012015 Google Scholar
18. Kapusta, P., M. Majchrowicz, D. Sankowski, and R. Banasiak, "Application of GPU parallel computing for acceleration of finite element method based 3D reconstruction algorithms in electrical capacitance tomography," Image Processing and Communications, Vol. 17, No. 4, 339-346, 2013. Google Scholar
19. Maimaitijiang, Y., M. A. Roula, S. Watson, R. Patz, R. J. Williams, and H. Griffiths, "Parallelization methods for implementation of a magnetic induction tomography forward model in symmetric multiprocessor systems," Parallel Computing, Vol. 34, No. 9, 497-507, 2008.
doi:10.1016/j.parco.2008.03.008 Google Scholar
20. Maimaitijiang, Y., M. A. Roula, S. Watson, G. Meriadec, K. Sobaihi, and R. J. Williams, "Evaluation of parallel accelerators for high performance image reconstruction for magnetic induction tomography," Journal of Selected Areas in Software Engineering (JSSE), January 2011. Google Scholar
21. Wei, H.-Y. and M. Soleimani, "Hardware and software design for a national instrument-based magnetic induction tomography system for prospective biomedical applications," Physiological Measurement, Vol. 33, No. 5, 863-879, 2012.
doi:10.1088/0967-3334/33/5/863 Google Scholar
22. Bíró, O., "Edge element formulations of eddy current problems," Computer Methods in Applied Mechanics and Engineering, Vol. 169, 391-405, 1999.
doi:10.1016/S0045-7825(98)00165-0 Google Scholar
23. Bíró, O. and K. Preis, "An edge finite element eddy current formulation using a reduced magnetic and a current vector potential," IEEE Transactions on Magnetics, Vol. 36, No. 5, 3128-3130, 2000.
doi:10.1109/20.908708 Google Scholar
24. Golias, N. A., C. S. Antonopoulos, T. D. Tsiboukis, and E. E. Kriezis, "3D eddy current computation with edge elements in terms of the electric intensity," The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 17, No. 5/6, 667-673, 1998.
doi:10.1108/03321649810221062 Google Scholar
25. Barber, D. C. and B. H. Brown, "Applied potential tomography," Journal of Physics E: Scientific Instruments, Vol. 17, No. 9, 723-734, 1984.
doi:10.1088/0022-3735/17/9/002 Google Scholar
26. Soleimani, M. and W. R. B. Lionheart, "Absolute conductivity reconstruction in magnetic induction tomography using a nonlinear method," IEEE Transactions on Medical Imaging, Vol. 25, No. 12, 1521-1530, 2006.
doi:10.1109/TMI.2006.884196 Google Scholar
27. Dyck, D. N., D. A. Lowther, and E. M. Freeman, "A method of computing the sensitivity of the electromagnetic quantities to changes in the material and sources," IEEE Transactions on Magnetics, Vol. 30, 3415-3418, 1994.
doi:10.1109/20.312672 Google Scholar
28. Soleimani, M. and W. R. B. Lionheart, "Image reconstruction in three-dimensional magnetostatic permeability tomography," IEEE Transactions on Magnetics, Vol. 41, 1274-1279, 2005.
doi:10.1109/TMAG.2005.845158 Google Scholar
29. Calvetti, D., S. Morigi, L. Reichel, and F. Sgallari, "Tikhonov regularization and the L-curve for large discrete ill-posed problems," Journal of Computational and Applied Mathematics, Vol. 123, No. 1, 423-446, 2000.
doi:10.1016/S0377-0427(00)00414-3 Google Scholar
30. Kirk, D. B. and W-M. W. Hwu, Programming Massively Parallel Processors: A Hands on Approach, Elsevier, 2010.
31. Bernstein, A. J., "Program analysis for parallel processing," IEEE Transactions on Electronic Computers, Vol. 15, 757-762, October 1966. Google Scholar
32. Arora, M., "The architecture and evolution of CPU-GPU systems for general purpose computing,", University of California, 2012. Google Scholar
33. Soleimani, M., C. E. Powell, and N. Polydorides, "Improving the forward solver for the complete electrode model in eit using algebraic multigrid," IEEE Transactions on Medical Imaging, Vol. 24, No. 5, 577-583, 2005.
doi:10.1109/TMI.2005.843741 Google Scholar
34. Lezar, E. and D. Davidson, "GPU-based LU decomposition for large method of moments problems," Electronics Letters, Vol. 46, No. 17, 1194-1196, 2010.
doi:10.1049/el.2010.1680 Google Scholar
35. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 3rd Ed., 1992.
36. Humphrey, J. R., D. K. Price, K. E. Spagnoli, A. L. Paolini, and E. J. Kelmelis, "Cula: Hybrid GPU accelerated linear algebra routines," SPIE Defense and Security Symposium (DSS), April 2010. Google Scholar
37. Wei, H.-Y. and M. Soleimani, "Three-dimensional magnetic induction tomography imaging using a matrix free Krylov subspace inversion algorithm," Progress In Electromagnetics Research, Vol. 122, 29-45, 2012.
doi:10.2528/PIER11091513 Google Scholar
38. Cheney, M., D. Isaacson, J. C. Newell, S. Simske, and J. Goble, "Noser: An algorithm for solving the inverse conductivity problem," International Journal of Imaging Systems and Technology, Vol. 2, No. 2, 1990.
doi:10.1002/ima.1850020203 Google Scholar