Vol. 58
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2015-12-07
A Simple 2×3 Beam-Forming Network with a 2-Bit Phase Shifter for Four-Beam Reconfiguration
By
Progress In Electromagnetics Research Letters, Vol. 58, 1-7, 2016
Abstract
A simple 2×3 reconfigurable beam-forming network (R-BFN) for four-beam reconfiguration application is designed and implemented. The proposed R-BFN with two input ports and three output ports consists of a 2:1 power divider, a 90° hybrid, a 180° hybrid and a 2-bit phase shifter. The 2-bit phase shifter has two states: one is a 180° phase shifter (State 1); the other is a 0°/360° phase shifter (State 2). By introducing the 2-bit phase shifter, the constant phase differences of three output ports can be reconfigured. Specifically, as different input ports are excited, the R-BFN provides three output signals with equal power levels and the progressive phases of -120° and 120° when the 2-bit phase shifter at state 1, while -60° and 60° when the 2-bit phase shifter at state 2, respectively. When the proposed R-BFN is connected to an antenna array, a four-beam reconfiguration is obtained. Simulated and measured results show that good impedance matching, high port isolation, equal power division, and constant phase difference have been achieved simultaneously within the operation band of 2.4-2.6 GHz. The capability of the proposed R-BFN to reconfigure beams is also verified experimentally by using a 2.5 GHz dipole array.
Citation
Guanxi Zhang, Li Sun, Bao-Hua Sun, Jiangpeng Yuan, and Jian-Ping Zhao, "A Simple 2×3 Beam-Forming Network with a 2-Bit Phase Shifter for Four-Beam Reconfiguration," Progress In Electromagnetics Research Letters, Vol. 58, 1-7, 2016.
doi:10.2528/PIERL15102004
References

1. Li, Z., D. Rodrigo, L. Jofre, and B. Cetiner, "A new class of antenna array with a reconfigurable element factor," IEEE Trans. Antennas Propag., Vol. 61, No. 4, 1947-1955, Apr. 2013.
doi:10.1109/TAP.2012.2234073

2. Stutzman, W. L. and G. A. Thiele, Antenna Theory and Design, 2nd Ed., Wiley, New York, 1997.

3. Skolnik, M., Radar Handbook, 2nd Ed., McGraw-Hill, New York, 1990.

4. Parker, D. and D. C. Zimmerman, "Phased arrays - Part I: Theory and architectures," IEEE Trans. Microw. Theory Techn., Vol. 50, No. 3, 678-687, Mar. 2002.
doi:10.1109/22.989953

5. Parker, D. and D. C. Zimmerman, "Phased arrays - Part II: Implementations, applications, future trends," IEEE Trans. Microw. Theory Techn., Vol. 50, No. 3, 688-698, Mar. 2002.
doi:10.1109/22.989954

6. Butler, J. and R. Lowe, "Beam-forming matrix simplifies design of electronically scanned antennas," IEEE Trans. Electron. Devices, 170-173, 1961.

7. Xu, H.-X., G.-M. Wang, and X. Wang, "Compact Butler matrix using composite right/left handed transmission line," Electron. Lett., Vol. 47, No. 19, 1081-1082, Sep. 2011.
doi:10.1049/el.2011.2135

8. Nedil, M., T. A. Denidni, and L. Talbi, "Novel Butler matrix using CPW multilayer technology," IEEE Trans. Microw. Theory Techn., Vol. 54, No. 1, 499-507, Jan. 2006.
doi:10.1109/TMTT.2005.860490

9. Tseng, C.-H., C.-J. Chen, and T.-H. Chu, "A low-cost 60-GHz switched-beam patch antenna array with Butler matrix network," IEEE Antennas Wireless Propag. Lett., Vol. 7, 432-435, 2008.
doi:10.1109/LAWP.2008.2001849

10. Blass, J., "Multi-directional antenna: New approach top stacked beams," IRE Int. Convention Record, 48-50, Pt. 1, 1960.

11. Chen, P., W. Hong, Z. Kuai, and J. Xu, "A double layer substrate integrated waveguide blass matrix for beamforming applications," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 6, 374-376, 2009.
doi:10.1109/LMWC.2009.2020020

12. Nolen, J., "Synthesis of multiple beam networks for arbitrary illuminations,", Ph.D. Dissertation, Bendix Corporation, Radio Division, Baltimore, MD, Apr. 1965.

13. Djerafi, T., N. J. G. Fonseca, and K. Wu, "Planar Ku-band 4×4 Nolen matrix in SIW technology," IEEE Trans. Microw. Theory Techn., Vol. 58, No. 2, 259-266, Feb. 2010.
doi:10.1109/TMTT.2009.2037866

14. Rappaport, T. D., Wireless Communication System, 2nd Ed., John Wiley & Sons Inc., 2001.