1. Born, M. and E. Wolf, Principles of Optics, 7th Ed., Cambridge University Press, 1999.
doi:10.1017/CBO9781139644181
2. Newton, R. G., Scattering Theory of Waves and Particles, 2nd Ed., Springer-Verlag, 1982.
doi:10.1007/978-3-642-88128-2
3. Carney, P. S., J. C. Schotland, and E. Wolf, "Generalized optical theorem for reflection, transmission, and extinction of power for scalar fields," Phys. Rev. E, Vol. 70, 036611, 2004.
doi:10.1103/PhysRevE.70.036611 Google Scholar
4. Lytle II, D. R., P. S. Carney, J. C. Schotland, and E. Wolf, "Generalized optical theorem for reflection, transmission, and extinction of power for electromagnetic fields," Phys. Rev. E, Vol. 71, 056610, 2005.
doi:10.1103/PhysRevE.71.056610 Google Scholar
5. Marengo, E. A., "A new theory of the generalized optical theorem in anisotropic media," IEEE Trans. Antennas Propagat., Vol. 61, 2164-2179, Apr. 2013.
doi:10.1109/TAP.2012.2233702 Google Scholar
6. Dacol, D. K. and D. G. Roy, "Generalized optical theorem for scattering in inhomogeneous media," Phys. Rev. E, Vol. 72, 036609, 2005.
doi:10.1103/PhysRevE.72.036609 Google Scholar
7. Halliday, D. and A. Curtis, "Generalized optical theorem for surface waves and layered media," Phys. Rev. E, Vol. 79, 056603, 2008.
doi:10.1103/PhysRevE.79.056603 Google Scholar
8. Lu, L., Z. Ding, R. S. Zeng, and Z. He, "Retrieval of Green's function and generalized optical theorem for the scattering of complete dyadic fields," J. Acoust. Soc. Am., Vol. 129, 1935-1944, 2011.
doi:10.1121/1.3553224 Google Scholar
9. Douma, H., I. Vasconcelos, and R. Snieder, "The reciprocity theorem for the scattered field is the progenitor of the generalized optical theorem," J. Acoust. Soc. Am., Vol. 129, 2765-2771, 2011.
doi:10.1121/1.3569728 Google Scholar
10. Wapenaar, K. and H. Douma, "A unified optical theorem for scalar and vectorial wave fields," J. Acoust. Soc. Am., Vol. 131, 3611-3626, 2012.
doi:10.1121/1.3701880 Google Scholar
11. Small, A., J. Fung, and V. N. Manoharan, "Generalization of the optical theorem for light scattering from a particle at a planar interface," J. Opt. Soc. Am. A, Vol. 30, 2519-2525, 2013.
doi:10.1364/JOSAA.30.002519 Google Scholar
12. Mitri, F. G., "Optical theorem for two-dimensional (2D) scalar monochromatic acoustical beams in cylindrical coordinates," Ultrasonics, Vol. 62, 20-26, 2015.
doi:10.1016/j.ultras.2015.02.019 Google Scholar
13. Mitri, F. G. and G. T. Silva, "Generalization of the extended optical theorem for scalar arbitrary-shape acoustical beams in spherical coordinates," Phys. Rev. E, Vol. 90, 053204, 2014.
doi:10.1103/PhysRevE.90.053204 Google Scholar
14. Marengo, E. A. and J. Tu, "Optical theorem detectors for active scatterers," Waves in Random and Complex Media, Vol. 25, 682-707, 2015.
doi:10.1080/17455030.2015.1080390 Google Scholar
15. Gustafsson, M., I. Vakili, S. E. B. Keskin, D. Sjöberg, and C. Larsson, "Optical theorem and forward scattering sum rule for periodic structures," IEEE Trans. Antennas Propagat., Vol. 60, 3818-3826, 2012.
doi:10.1109/TAP.2012.2201113 Google Scholar
16. Zhang, L. and P. L. Marston, "Optical theorem for acoustic non-diffracting beams and application to radiation force and torque," Biomedical Optics Express, Vol. 4, 1610-1617, 2013.
doi:10.1364/BOE.4.001610 Google Scholar
17. Smotrova, E. I., V. O. Byelobrov, T. M. Benson, J. Ctyroky, R. Sauleau, and A. I. Nosich, "Optical theorem helps understand thresholds of lasing in microcavities with active region," IEEE J. Quantum Electronics, Vol. 47, 20-30, 2011.
doi:10.1109/JQE.2010.2055836 Google Scholar
18. Tsai, C.-H., S.-H. Chang, and S. H. Tseng, "Applying the optical theorem in a finite-difference time-domain simulation of light scattering," IEEE Trans. Antennas Propag., Vol. 58, 3091-3094, 2010.
doi:10.1109/TAP.2010.2052556 Google Scholar
19. De Hoop, A. T., "A time domain energy theorem for scattering of plane electromagnetic waves," Radio Science, Vol. 19, 1179-1184, 1984.
doi:10.1029/RS019i005p01179 Google Scholar
20. Karlsson, A., "On the time domain version of the optical theorem," Am. J. Phys., Vol. 68, 344-349, 2000.
doi:10.1119/1.19437 Google Scholar
21. Karlsson, A., "Some results extracted from the time domain version of the optical theorem," Radio Science, Vol. 38, No. 2, article 8008, 10 pages, 2003. Google Scholar
22. Štumpf, M. and I. E. Lager, "The time-domain optical theorem in antenna theory," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 895-897, Apr. 2015.
doi:10.1109/LAWP.2014.2384008 Google Scholar
23. Marengo, E. A. and F. K. Gruber, "Optical-theorem-based coherent scatterer detection in complex environments," International Journal of Antennas and Propagation, Vol. 2013, article 231729, 12 pages, 2013. Google Scholar
24. Manson, G., K. Worden, and M. Wood, "Analysis of reciprocity breakdown in nonlinear systems," Modern Practice in Stress & Vibration Analysis, J. Physics, conf. series 382, paper 012031, IOP Publishing, 2012. Google Scholar
25. De Hoop, A. T., "Time-domain reciprocity theorems for electromagnetic fields in dispersive media," Radio Science, Vol. 22, 1171-1178, Dec. 1987.
doi:10.1029/RS022i007p01171 Google Scholar
26. Kong, J. A. and D. K. Cheng, "Modified reciprocity theorem for bianisotropic media," Proc. IEEE, Vol. 117, 349-350, Feb. 1970. Google Scholar
27. Jackson, J. D., Classical Electrodynamics, 3rd Ed., John Wiley & Sons, 1999.
28. Marengo, E. A., "Nonuniqueness of optical theorem detectors," J. Opt. Soc. Am. A, Vol. 32, 1936-1942, 2015.
doi:10.1364/JOSAA.32.001936 Google Scholar
29. Marengo, E. A. and A. J. Devaney, "Time-dependent plane wave and multipole expansions of the electromagnetic field," J. Math. Phys., Vol. 39, 3643-3660, 1998.
doi:10.1063/1.532457 Google Scholar