Vol. 65
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-01-25
Design of Compact Double-Layer Microwave Absorber for X-Ku Bands Using Genetic Algorithm
By
Progress In Electromagnetics Research B, Vol. 65, 157-168, 2016
Abstract
In this paper, an efficient lightweight double-layer absorber with impedance-matching structure at X-Ku bands was designed, optimized and implemented. First, genetic algorithm (GA) was considered to optimize the thicknesses and material properties for better absorption of the incident electromagnetic wave and reduction of radar cross section (RCS). Next, with the aid of the obtained dielectric and magnetic properties, the microwave absorber was fabricated from magnetodielectric composite materials besides a natural rubber. Finally, the analytical and numerical results were compared with the measurements to check the validity of the design. Experiments showed that the reflection coefficient for each layer backed with a metallic sheet was insufficient; however, for the double layer absorber, the reflectivity measurement values reached up to -28 dB in the case of normal incidence and -17 dB for oblique incidence.
Citation
Hesham Abd El-Hakim, Korany Mahmoud, and Abdelmonem Abdelaziz, "Design of Compact Double-Layer Microwave Absorber for X-Ku Bands Using Genetic Algorithm," Progress In Electromagnetics Research B, Vol. 65, 157-168, 2016.
doi:10.2528/PIERB15111702
References

1. Huang, Y., Y. Feng, and T. Jiang, "Electromagnetic cloaking by layered structure of homogeneous isotropic materials," Optics Express, Vol. 15, No. 18, 11133-11141, 2007.
doi:10.1364/OE.15.011133

2. Yong, B.-Z. and T.-J. Cui, "Three-dimensional axisymmetric invisibility cloaks with arbitrary shapes in layered-medium background," Progress In Electromagnetics Research B, Vol. 27, 151-163, 2011.

3. Perini, J. and L. S. Cohen, "Design of broad-band radar-absorbing materials for large angles of incidence," IEEE Transactions on Electromagnetic Compatibility, Vol. 35, No. 2, 223-230, 1993.
doi:10.1109/15.229418

4. Attaf, B., Advances in Composite Materials - Ecodesign and Analysis, Chapter 13, 291-316, InTech, 2011.

5. Gong, R., Y. He, X. Li, C. Liu, and X. Wang, "Study on absorption and mechanical properties of rubber sheet absorbers," Materials Science-Poland, Vol. 25, No. 4, 1001-1010, 2007.

6. Anyong, Q., "Design of thin wideband planar absorber using dynamic differential evolution and real electromagnetic composite materials," IEEE International Symposium, Antennas and Propagation (APSURSI), 2912-2915, Spokane, WA, July 3-8, 2011.

7. Liang, W. M., Z. S. Jun, L. J. Qi, L. Wei, L. X. Mei, and X. W. Liang, "FSS design research for improving the wide-band stealth performance of radar absorbing materials," IEEE Proceeding, International Work Shop, Metamaterials (Meta), 1-4, Nanjing, Oct. 2012.

8. Ramesh, C., D. Singh, and N. K. Agarwal, "Implementation of multilayer ferrite radar absorbing coating with genetic algorithm for radar cross-section reduction at X-band," Indian Journal of Radio and Space Physics, Vol. 36, No. 2, 145-152, 2007.

9. Micheli, D., R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, V. M. Primiani, and F. Moglie, "Broadband electromagnetic absorbers using carbon nanostructure-based composites," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 10, 2633-2646, 2011.
doi:10.1109/TMTT.2011.2160198

10. Li, M., W. Zhou, H. B. Liu, and X. Q. Shen, "Electromagnetic and microwave absorption of nanocrystalline alloy Fe0.2 (Co0.2Ni0.8)0.8 and nanocomposite SrFe12O19/Ni0.5Zn0.5Fe2O4 microfibers," Advanced Materials Research, Vol. 1035, No. 1033, 355-360, 2014.

11. Qian, S. X., L. H. Bo, W. Zhou, Q. X. Ye, J. M. Xiang, and Y. X. Chun, "Microwave absorption properties of a double-layer absorber based on nanocomposite BaFe12O19/α-Fe and nanocrystalline α-Fe microfibers," Advanced Materials Research, Vol. 1035, 339-343, 2014.

12. Sukanta Das, G. C. N., S. K. Sahu, P. C. Routray, A. K. Roy, and H. Baskey, "Microwave absorption properties of double-layer RADAR absorbing materials based on doped Barium Hexaferrite/TiO2/conducting carbon black," Journal of Engineering, Vol. 2014, 1-5, 2014.

13. Sukanta Das, G. C. N., S. K. Sahu, P. C. Routray, A. K. Roy, and H. Baskey, "Microwave absorption properties of double-layer composites using CoZn/NiZn/MnZn-ferrite and titanium dioxide," Journal of Magnetism and Magnetic Materials, Vol. 377, 111-116, 2014.

14. John, L. W., "Broadband magnetic microwave absorbers: Fundamental limitations," IEEE Transactions on Magnetics, Vol. 29, No. 6, 4209-4214, 1993.
doi:10.1109/20.280862

15. Knott, E. F., J. F. Shaffer, and M. T. Tuley, Radar Cross Section, Artech House, 1993.
doi:10.1007/978-1-4684-9904-9

16. Ghodgaonkar, D. K., V. V. Varadan, and V. K. Varadan, "Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies," IEEE Transactions on Instrumentation and Measurement, Vol. 59, No. 2, 387-394, 1990.
doi:10.1109/19.52520

17. Marina, Y. K., J. L. Drewniak, R. E. DuBroff, K. N. Rozanov, and B. Archambeault, "Modeling of shielding composite materials and structures for microwave frequencies," Progress In Electromagnetics Research B, Vol. 15, 197-215, 2009.

18. Dharmendra, S., A. Kumar, S. Meena, and V. Agarwala, "Analysis of frequency selective surfaces for radar absorbing materials," Progress In Electromagnetics Research B, Vol. 38, 297-314, 2012.

19. Haupt, R. L., "An introduction to genetic algorithms for electromagnetics," IEEE Transactions on Antennas and Propagation Magazine, Vol. 37, No. 2, 7-15, 1995.
doi:10.1109/74.382334

20. Morari, C., I. Balan, J. Pintea, E. Chitanu, and I. Iordache, "Electrical conductivity and electromagnetic shielding effectiveness of silicone rubber filled with ferrite and graphite powders," Progress In Electromagnetics Research M, Vol. 21, 93-104, 2011.
doi:10.2528/PIERM11080406

21. Nina, H., A. Vesel, V. Ivanovskiand, and M. K. Gunde, "Electrical conductivity of carbon black pigments," Dyes and Pigments, Vol. 95, No. 1, 1-7, Elsevier, 2012.

22. Queffelec, P., G. Philppe, J. Gieraltowski, and J. Loaec, "A microstrip device for the broad band simultaneous measurement of complex permeability and permittivity," IEEE Transactions on Magnetics, Vol. 30, No. 2, 224-231, 1994.
doi:10.1109/20.312262

23. William, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," IEEE Proceeding, Vol. 62, No. 1, 33-36, 1974.
doi:10.1109/PROC.1974.9382

24. Dib, N. I., M. Asi, and A. Sabbah, "On the optimal design of multilayer microwave absorbers," Progress In Electromagnetics Research C, Vol. 13, 171-185, 2010.
doi:10.2528/PIERC10041310

25. Roy, S., S. D. Roy, J. Tewary, A. Mahanti, and G. K. Mahanti, "Particle swarm optimization for optimal design of broadband multilayer microwave absorber for wide angle of incidence," Progress In Electromagnetics Research B, Vol. 62, 121-135, 2015.
doi:10.2528/PIERB14122602