1. Huang, Y., Y. Feng, and T. Jiang, "Electromagnetic cloaking by layered structure of homogeneous isotropic materials," Optics Express, Vol. 15, No. 18, 11133-11141, 2007.
doi:10.1364/OE.15.011133
2. Yong, B.-Z. and T.-J. Cui, "Three-dimensional axisymmetric invisibility cloaks with arbitrary shapes in layered-medium background," Progress In Electromagnetics Research B, Vol. 27, 151-163, 2011.
3. Perini, J. and L. S. Cohen, "Design of broad-band radar-absorbing materials for large angles of incidence," IEEE Transactions on Electromagnetic Compatibility, Vol. 35, No. 2, 223-230, 1993.
doi:10.1109/15.229418
4. Attaf, B., Advances in Composite Materials - Ecodesign and Analysis, Chapter 13, 291-316, InTech, 2011.
5. Gong, R., Y. He, X. Li, C. Liu, and X. Wang, "Study on absorption and mechanical properties of rubber sheet absorbers," Materials Science-Poland, Vol. 25, No. 4, 1001-1010, 2007.
6. Anyong, Q., "Design of thin wideband planar absorber using dynamic differential evolution and real electromagnetic composite materials," IEEE International Symposium, Antennas and Propagation (APSURSI), 2912-2915, Spokane, WA, July 3-8, 2011.
7. Liang, W. M., Z. S. Jun, L. J. Qi, L. Wei, L. X. Mei, and X. W. Liang, "FSS design research for improving the wide-band stealth performance of radar absorbing materials," IEEE Proceeding, International Work Shop, Metamaterials (Meta), 1-4, Nanjing, Oct. 2012.
8. Ramesh, C., D. Singh, and N. K. Agarwal, "Implementation of multilayer ferrite radar absorbing coating with genetic algorithm for radar cross-section reduction at X-band," Indian Journal of Radio and Space Physics, Vol. 36, No. 2, 145-152, 2007.
9. Micheli, D., R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, V. M. Primiani, and F. Moglie, "Broadband electromagnetic absorbers using carbon nanostructure-based composites," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 10, 2633-2646, 2011.
doi:10.1109/TMTT.2011.2160198
10. Li, M., W. Zhou, H. B. Liu, and X. Q. Shen, "Electromagnetic and microwave absorption of nanocrystalline alloy Fe0.2 (Co0.2Ni0.8)0.8 and nanocomposite SrFe12O19/Ni0.5Zn0.5Fe2O4 microfibers," Advanced Materials Research, Vol. 1035, No. 1033, 355-360, 2014.
11. Qian, S. X., L. H. Bo, W. Zhou, Q. X. Ye, J. M. Xiang, and Y. X. Chun, "Microwave absorption properties of a double-layer absorber based on nanocomposite BaFe12O19/α-Fe and nanocrystalline α-Fe microfibers," Advanced Materials Research, Vol. 1035, 339-343, 2014.
12. Sukanta Das, G. C. N., S. K. Sahu, P. C. Routray, A. K. Roy, and H. Baskey, "Microwave absorption properties of double-layer RADAR absorbing materials based on doped Barium Hexaferrite/TiO2/conducting carbon black," Journal of Engineering, Vol. 2014, 1-5, 2014.
13. Sukanta Das, G. C. N., S. K. Sahu, P. C. Routray, A. K. Roy, and H. Baskey, "Microwave absorption properties of double-layer composites using CoZn/NiZn/MnZn-ferrite and titanium dioxide," Journal of Magnetism and Magnetic Materials, Vol. 377, 111-116, 2014.
14. John, L. W., "Broadband magnetic microwave absorbers: Fundamental limitations," IEEE Transactions on Magnetics, Vol. 29, No. 6, 4209-4214, 1993.
doi:10.1109/20.280862
15. Knott, E. F., J. F. Shaffer, and M. T. Tuley, Radar Cross Section, Artech House, 1993.
doi:10.1007/978-1-4684-9904-9
16. Ghodgaonkar, D. K., V. V. Varadan, and V. K. Varadan, "Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies," IEEE Transactions on Instrumentation and Measurement, Vol. 59, No. 2, 387-394, 1990.
doi:10.1109/19.52520
17. Marina, Y. K., J. L. Drewniak, R. E. DuBroff, K. N. Rozanov, and B. Archambeault, "Modeling of shielding composite materials and structures for microwave frequencies," Progress In Electromagnetics Research B, Vol. 15, 197-215, 2009.
18. Dharmendra, S., A. Kumar, S. Meena, and V. Agarwala, "Analysis of frequency selective surfaces for radar absorbing materials," Progress In Electromagnetics Research B, Vol. 38, 297-314, 2012.
19. Haupt, R. L., "An introduction to genetic algorithms for electromagnetics," IEEE Transactions on Antennas and Propagation Magazine, Vol. 37, No. 2, 7-15, 1995.
doi:10.1109/74.382334
20. Morari, C., I. Balan, J. Pintea, E. Chitanu, and I. Iordache, "Electrical conductivity and electromagnetic shielding effectiveness of silicone rubber filled with ferrite and graphite powders," Progress In Electromagnetics Research M, Vol. 21, 93-104, 2011.
doi:10.2528/PIERM11080406
21. Nina, H., A. Vesel, V. Ivanovskiand, and M. K. Gunde, "Electrical conductivity of carbon black pigments," Dyes and Pigments, Vol. 95, No. 1, 1-7, Elsevier, 2012.
22. Queffelec, P., G. Philppe, J. Gieraltowski, and J. Loaec, "A microstrip device for the broad band simultaneous measurement of complex permeability and permittivity," IEEE Transactions on Magnetics, Vol. 30, No. 2, 224-231, 1994.
doi:10.1109/20.312262
23. William, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," IEEE Proceeding, Vol. 62, No. 1, 33-36, 1974.
doi:10.1109/PROC.1974.9382
24. Dib, N. I., M. Asi, and A. Sabbah, "On the optimal design of multilayer microwave absorbers," Progress In Electromagnetics Research C, Vol. 13, 171-185, 2010.
doi:10.2528/PIERC10041310
25. Roy, S., S. D. Roy, J. Tewary, A. Mahanti, and G. K. Mahanti, "Particle swarm optimization for optimal design of broadband multilayer microwave absorber for wide angle of incidence," Progress In Electromagnetics Research B, Vol. 62, 121-135, 2015.
doi:10.2528/PIERB14122602