1. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
doi:10.1126/science.1125907 Google Scholar
2. Schurig, D., J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. Starr, et al. "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628 Google Scholar
3. Hu, J., X. Zhou, and G. Hu, "Design method for electromagnetic cloak with arbitrary shapes based on Laplace's equation," Optics Express, Vol. 17, 1308-1320, 2009.
doi:10.1364/OE.17.001308 Google Scholar
4. Chang, Z., X. Zhou, J. Hu, and G. Hu, "Design method for quasi-isotropic transformation materials based on inverse Laplace's equation with sliding boundaries," Optics Express, Vol. 18, 6089-6096, 2010.
doi:10.1364/OE.18.006089 Google Scholar
5. Rumpf, R. C., C. R. Garcia, E. A. Berry, and J. H. Barton, "Finite-difference frequency-domain algorithm for modeling electromagnetic scattering from general anisotropic objects," Progress In Electromagnetics Research B, Vol. 61, 55-67, 2014.
doi:10.2528/PIERB14071606 Google Scholar
6. Landy, N. I. and W. J. Padilla, "Guiding light with conformal transformations," Optics Express, Vol. 17, 14872-14879, 2009.
doi:10.1364/OE.17.014872 Google Scholar
7. Ma, J.-J., X.-Y. Cao, K.-M. Yu, and T. Liu, "Determination the material parameters for arbitrary cloak based on Poisson's equation," Progress In Electromagnetics Research M, Vol. 9, 177-184, 2009.
doi:10.2528/PIERM09091405 Google Scholar
8. Chen, X., Y. Fu, and N. Yuan, "Invisible cloak design with controlled constitutive parameters and arbitrary shaped boundaries through Helmholtz's equation," Optics Express, Vol. 17, 3581-3586, Mar. 2009.
doi:10.1364/OE.17.003581 Google Scholar
9. Rumpf, R. C. and J. Pazos, "Synthesis of spatially variant lattices," Optics Express, Vol. 20, 15263-15274, 2012.
doi:10.1364/OE.20.015263 Google Scholar
10. Smith, G. D., Numerical Solution of Partial Differential Equations: Finite Difference Methods, Oxford University Press, 1985.
11. LeVeque, R. J., "Finite difference methods for differential equations," Draft Version for Use in AMath, Vol. 585, 1998. Google Scholar
12. Golub, G. H. and C. F. van Loan, Matrix Computations, Vol. 3, JHU Press, 2012.
13. Johnson, H. and C. S. Burrus, "On the structure of e±cient DFT algorithms," IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 33, 248-254, 1985.
doi:10.1109/TASSP.1985.1164526 Google Scholar
14. Iserles, A., A First Course in the Numerical Analysis of Differential Equations, Cambridge University Press, 2009.
15. Chapra, S. C. and R. P. Canale, Numerical Methods for Engineers, Vol. 2, McGraw-Hill, 2012.
16. Arfken, G. and H. Weber, Mathematical Methods for Physicists, 6th Ed., Academic, 2005.
17. Morgan, M. A., Finite Element and Finite Difference Methods in Electromagnetic Scattering, Elsevier, 2013.
18. Luong, P., "A mathematical coastal ocean circulation system with breaking waves and numerical grid generation," Applied Mathematical Modelling, Vol. 21, 633-641, 1997.
doi:10.1016/S0307-904X(97)00076-0 Google Scholar
19. Eiseman, P. R., "Grid generation for fluid mechanics computations," Annual Review of Fluid Mechanics, Vol. 17, 487-522, 1985.
doi:10.1146/annurev.fl.17.010185.002415 Google Scholar
20. Thompson, J. F., Z. U. Warsi, and C. W. Mastin, Numerical Grid Generation: Foundations and Applications, Vol. 45, North-holland Amsterdam, 1985.
21. Sanmiguel-Rojas, E., J. Ortega-Casanova, C. del Pino, and R. Fernandez-Feria, "A Cartesian grid finite-difference method for 2D incompressible viscous flows in irregular geometries," Journal of Computational Physics, Vol. 204, 302-318, 2005.
doi:10.1016/j.jcp.2004.10.010 Google Scholar
22. Akcelik, V., B. Jaramaz, and O. Ghattas, "Nearly orthogonal two-dimensional grid generation with aspect ratio control," Journal of Computational Physics, Vol. 171, 805-821, 2001.
doi:10.1006/jcph.2001.6811 Google Scholar
23. Davis, T. A., "Algorithm 832: UMFPACK V4.3 --- An unsymmetric-pattern multifrontal method," ACM Transactions on Mathematical Software (TOMS), Vol. 30, 196-199, 2004.
doi:10.1145/992200.992206 Google Scholar
24. Paige, C. C. and M. A. Saunders, "Solution of sparse indefinite systems of linear equations," SIAM Journal on Numerical Analysis, Vol. 12, 617-629, 1975.
doi:10.1137/0712047 Google Scholar
25. Rumpf, R. C., "Simple implementation of arbitrarily shaped total-field/scattered-field regions in finite-difference frequency-domain," Progress In Electromagnetics Research B, Vol. 36, 221-248, 2012.
doi:10.2528/PIERB11092006 Google Scholar
26. Schutz, B., A First Course in General Relativity, Cambridge University Press, 2009.
doi:10.1017/CBO9780511984181
27. Hobson, M. P., G. P. Efstathiou, and A. N. Lasenby, General Relativity: An Introduction for Physicists, Cambridge University Press, 2006.
doi:10.1017/CBO9780511790904
28. Liseikin, V., "Coordinate transformations," Grid Generation Methods, 31-66, Springer, Netherlands, 2010. Google Scholar
29. Kwon, D.-H. and D. H. Werner, "Transformation electromagnetics: An overview of the theory and applications," IEEE Antennas and Propagation Magazine, Vol. 52, 24-46, 2010.
doi:10.1109/MAP.2010.5466396 Google Scholar