1. Mathur, R. B., S. Pande, B. P. Singh, and T. L. Dhami, "Electrical and mechanical properties of multiwalled carbon nanotubes reinforced PMMA and PS composites," Polymer Composites, Vol. 29, No. 7, 717-727, 2008.
doi:10.1002/pc.20449 Google Scholar
2. Kim, H. M., K. Kim, C. Y. Lee, J. Joo, S. J. Cho, H. S. Yoon, D. A. Pejakovic, J. W. Yoo, and A. J. Epstein, "Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing fe catalyst," Appl. Phys. Lett., Vol. 84, No. 4, 589-591, 2004.
doi:10.1063/1.1641167 Google Scholar
3. Arjmand, M., M. Mahmoodi, G. A. Gelves, S. Park, and U. Sundararaj, "Electrical and electromagnetic interference shielding properties of flow-induced oriented carbon nanotubes in polycarbonate," Carbon, Vol. 49, No. 11, 3430-3440, September 2011.
doi:10.1016/j.carbon.2011.04.039 Google Scholar
4. Thostenson, E. T. and T. Chou, "Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites RID B-8587-2008," Carbon, Vol. 44, No. 13, 3022-3029, November 2006. Google Scholar
5. Mierczynska, A., M. Mayne-L'Hermite, G. Boiteux, and J. K. Jeszka, "Electrical and mechanical properties of carbon nanotube/ultrahigh-molecular-weight polyethylene composites prepared by a filler prelocalization method," J. Appl. Polym. Sci., Vol. 105, No. 1, 158-168, July 5, 2007.
doi:10.1002/app.26044 Google Scholar
6. Ayatollahi, M. R., S. Shadlou, M. M. Shokrieh, and M. Chitsazzadeh, "Effect of multi-walled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy-based nanocomposites," Polym. Test., Vol. 30, No. 5, 548-556, August 2011.
doi:10.1016/j.polymertesting.2011.04.008 Google Scholar
7. Lee, S. H., M. W. Kim, S. H. Kim, and J. R. Youn, "Rheological and electrical properties of polypropylene/MWCNT composites prepared with MWCNT masterbatch chips," European Polymer Journal, Vol. 44, No. 6, 1620-1630, June 2008.
doi:10.1016/j.eurpolymj.2008.03.017 Google Scholar
8. Bauhofer, W. and J. Z. Kovacs, "A review and analysis of electrical percolation in carbon nanotube polymer composites," Composites Sci. Technol., Vol. 69, No. 10, 1486-1498, 2009.
doi:10.1016/j.compscitech.2008.06.018 Google Scholar
9. Li, C., E. T. Thostenson, and T. Chou, "Dominant role of tunneling resistance in the electrical conductivity of carbon nanotube-based composites RID C-8998-2011 RID B-8587-2008," Appl. Phys. Lett., Vol. 91, No. 22, 223114, November 26, 2007.
doi:10.1063/1.2819690 Google Scholar
10. Rutherglen, C. and P. Burke, "Nanoelectromagnetics: Circuit and electromagnetic properties of carbon nanotubes," Small, Vol. 5, No. 8, 884-906, 2009.
doi:10.1002/smll.200800527 Google Scholar
11. Smolyansky, D. and S. Corey, "PCB interconnect characterization from TDR measurements," Electronic Engineering, Vol. 71, No. 870, 63, July 1999. Google Scholar
12. O'Connor, K. M. and C. M. Dowding, Geomeasurements by Pulsing TDR Cables and Probes, 402, CRC Press, 1999.
13. Lin, M. and J. Thaduri, Structural Damage Detection Using an Embedded ETDR Distributed Strain Sensor, 315, Springer, 2005.
14. Chen, G., H. Mu, D. Pommerenke, and J. L. Drewniak, "Damage detection of reinforced concrete beams with novel distributed Crack/Strain sensors," Structural Health Monitoring, Vol. 3, No. 3, 225-243, September 1, 2004.
doi:10.1177/1475921704045625 Google Scholar
15. Dominauskas, A., D. Heider, J. W., Gillespie, and Jr., "Electric time-domain reflectometry distributed flow sensor," Composites Part A: Applied Science and Manufacturing, Vol. 38, No. 1, 138, 2007.
doi:10.1016/j.compositesa.2006.01.019 Google Scholar
16. Obaid, A. A., S. Yarlagadda, M. K. Yoon, N. E. Hager, and R. C. Domszy, "A time-domain reflectometry method for automated measurement of crack propagation in composites during mode I DCB testing," Journal of Composite Materials, Vol. 40, No. 22, 2047-2066, November.
doi:10.1177/0021998306061309 Google Scholar
17. Pandey, G., M. Wolters, E T. Thostenson, and D. Heider, "Localized functionally modified glass fibers with carbon nanotube networks for crack sensing in composites using time domain reflectometry," Carbon, Vol. 50, No. 10, 3816-3825, 2012.
doi:10.1016/j.carbon.2012.04.008 Google Scholar
18. Ahir, S. and E. Terentjev, "Photomechanical actuation in polymer-nanotube composites," Nature Materials, Vol. 4, No. 6, 491-495, June 2005.
doi:10.1038/nmat1391 Google Scholar
19. Ahir, S., A. Squires, A. Tajbakhsh, and E. Terentjev, "Infrared actuation in aligned polymer-nanotube composites RID B-7623-2011," Physical Review B, Vol. 73, No. 8, 085420, February 2006.
doi:10.1103/PhysRevB.73.085420 Google Scholar
20. Koerner, H., G. Price, N. Pearce, M. Alexander, and R. Vaia, "Remotely actuated polymer nanocomposites-stress-recovery of carbon-nanotube-filled thermoplastic elastomers," Nature Materials, Vol. 3, No. 2, 115-120, February 2004.
doi:10.1038/nmat1059 Google Scholar
21. Rochefort, A., P. Avouris, F. Lesage, and D. Salahub, "Electrical and mechanical properties of distorted carbon nanotubes RID A-5124-2010," Physical Review B, Vol. 60, No. 19, 13824-19330, November 15, 1999.
doi:10.1103/PhysRevB.60.13824 Google Scholar
22. Kenneth, J. L., J. Kim, J. P. Lynch, N. Wong, S. Kam, and A. K. Nicholas, "Multifunctional layer-by-layer carbon nanotube-polyelectrolyte thin films for strain and corrosion sensing," Smart Mater. Struct., Vol. 16, No. 2, 429, 2007.
doi:10.1088/0964-1726/16/2/022 Google Scholar
23. Park, M., H. Kim, and J. P. Youngblood, "Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films," Nanotechnology, Vol. 19, No. 5, 055705, 2008.
doi:10.1088/0957-4484/19/05/055705 Google Scholar
24. Pham, G. T., Y. Park, Z. Liang, C. Zhang, and B. WangPham, G. T., Y. Park, Z. Liang, C. Zhang, B. Wang, "Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing," Composites Part B: Engineering, Vol. 39, No. v, 209-216, 2008.
doi:10.1016/j.compositesb.2007.02.024 Google Scholar
25. Anandand, S. V. and D. R. Mahapatra, "Quasi-static and dynamic strain sensing using carbon nanotube/epoxy nanocomposite thin films," Smart Mater. Struct., Vol. 18, No. 4, 045013, 2009.
doi:10.1088/0964-1726/18/4/045013 Google Scholar
26. Hu, N., Y. Karube, M. Arai, T. Watanabe, C. Yan, Y. Li, Y. Liu, and H. Fukunaga, "Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor," Carbon, Vol. 48, No. 3, 680-687, 2010.
doi:10.1016/j.carbon.2009.10.012 Google Scholar
27. Srivastava, R. K., V. S. M. Vemuru, Y. Zeng, R. Vajtai, S. Nagarajaiah, P. M. Ajayan, and A. Srivastava, "The strain sensing and thermal-mechanical behavior of flexible multi-walled carbon nanotube/polystyrene composite films," Carbon, Vol. 49, No. 12, 3928-3936, October 2011.
doi:10.1016/j.carbon.2011.05.031 Google Scholar
28. Fellner-Feldegg, H., "Measurement of dielectrics in the time domain," J. Phys. Chem., Vol. 73, No. 3, 616-623, 1969.
doi:10.1021/j100723a023 Google Scholar
29. Castiglione, P. and P. J. Shouse, "The effect of ohmic cable losses on time-domain re°ectometry measurements of electrical conductivity," Soil Science Society of America Journal, Vol. 67, No. 2, March 2003.
doi:10.2136/sssaj2003.4140 Google Scholar
30. Robinson, D. A. and S. P. Friedman, Parallel Plates Compared with Conventional Rods as TDR Waveguides for Sensing Soil Moisture, 497, Springer, 2000.
31. Faria, J. A. B., Electromagnetic Foundations of Electrical Engineering, 399, Wiley, 2008.
doi:10.1002/9780470697498
32. Schlaeger, S., "A fast TDR-inversion technique for the reconstruction of spatial soil moisture content," Hydrol. Earth Syst. Sci., Vol. 9, No. 5, 481-492, 2005.
doi:10.5194/hess-9-481-2005 Google Scholar
33. Platt, I. G. and I. M. Woodhead, "A 1D inversion for non-invasive time domain reflectometry," Meas. Sci. Technol., Vol. 19, No. 5, 055708, May 2008.
doi:10.1088/0957-0233/19/5/055708 Google Scholar
34. Hsue, C.-W. and T.-W. Pan, "Reconstruction of nonuniform transmission lines from timedomain reflectometry," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, No. 1, 32-38, 1997.
doi:10.1109/22.552029 Google Scholar
35. Banninger, D., H. Wunderli, M. Nussberger, and H. Fluhler, "Inversion of TDR signals revisited," Journal of Plant Nutrition and Soil Science, Vol. 171, No. 2, 137-145, 2008.
doi:10.1002/jpln.200700179 Google Scholar
36. Christopoulos, C., The Transmission-line Modeling Method: TLM, Oxford University Press, Institute of Electrical and Electronics Engineers, 1995.
doi:10.1109/9780470546659
37. Thostenson, E. T., S. Ziaee, and T. Chou, "Processing and electrical properties of carbon nanotube/vinyl ester nanocomposites," Composites Sci. Technol., Vol. 69, No. 6, 801-804, May 2009.
doi:10.1016/j.compscitech.2008.06.023 Google Scholar
38. Dang, Z., S. Yao, and H. Xu, "Effect of tensile strain on morphology and dielectric property in nanotube/polymer nanocomposites," Applied Physics Letters, Vol. 90, No. 1, 012907-012907-3, 2007.
doi:10.1063/1.2430633 Google Scholar
39. Lee, H. Y. and Y. M. Shkel, "Dielectric response of solids for contactless detection of stresses and strains," Sensors and Actuators A: Physical, Vol. 137, No. 2, 287, 2007.
doi:10.1016/j.sna.2007.03.029 Google Scholar
40. Lee, H. Y., Y. Peng, and Y. M. Shkel, Strain-dielectric response of dielectrics as foundation for electrostriction stresses, American Institute of Physics, 2005.
41. Lan, C., P. Srisungsitthisunti, P. B. Amama, T. S. Fisher, X. Xu, and R. G. Reifenberger, "Measurement of metal/carbon nanotube contact resistance by adjusting contact length using laser ablation," Nanotechnology, Vol. 19, No. 12, 125703, 2008.
doi:10.1088/0957-4484/19/12/125703 Google Scholar
42. Noborio, K., "Measurement of soil water content and electrical conductivity by time domain reflectometry: A review," Comput. Electron. Agric., Vol. 31, No. 3, 213-237, 2001.
doi:10.1016/S0168-1699(00)00184-8 Google Scholar