Vol. 59
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-04-03
Mutual Coupling Reduction Between Printed Dual-Frequency Antenna Arrays
By
Progress In Electromagnetics Research Letters, Vol. 59, 63-69, 2016
Abstract
A new defected ground structure (DGS) is designed to reduce the mutual coupling of a dual-frequency printed monopole array. The designed dual-frequency DGS consists of two concentric split ring slots. Each split ring slot produces band rejection characteristics at one resonant frequency of the antennas. An effective equivalent circuit model of the DGS section is proposed with the circuit parameters successfully extracted. Good agreement exists among the circuit simulation, EM simulation and experimental results. With the inclusion of the DGS, the measured mutual coupling of the dual-band array has been effectively reduced by 10 dB and 20 dB at two resonant frequencies, respectively.
Citation
Lin Li, Yantao Yu, and Lijun Yi, "Mutual Coupling Reduction Between Printed Dual-Frequency Antenna Arrays," Progress In Electromagnetics Research Letters, Vol. 59, 63-69, 2016.
doi:10.2528/PIERL16020601
References

1. Dossche, S., S. Blanch, and J. Romeu, "Optimum antenna matching to minimize signals correlation on a two-port antenna diversity system," Electronics Lett., Vol. 40, No. 19, 1164-1165, 2004.
doi:10.1049/el:20045737

2. Hong, T. and Y. Yu, "A compact monopole array with increased port isolation," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 8/9, 1213-1220, 2011.
doi:10.1163/156939311795762123

3. Lee, T.-I. and Y. Wang, "Mode-based information channels in closely coupled dipole pairs," IEEE Trans. Antennas Propag., Vol. 56, No. 12, 3804-3804, 2008.
doi:10.1109/TAP.2008.2007379

4. Coetzee, J. C. and Y. Yu, "Port decoupling for small arrays by means of an eigenmode feed network," IEEE Trans. Antennas Propag., Vol. 56, No. 6, 1587-1593, 2008.
doi:10.1109/TAP.2008.923301

5. Lui, H.-S. and H. T. Hui, "Effective mutual coupling compensation for direction-of-arrival estimations using a new, accurate determination method for the receiving mutual impedance," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 2/3, 271-281, 2010.
doi:10.1163/156939310790735598

6. Lui, H. S. and H. T. Hui, "Mutual coupling compensation for direction-of-arrival estimations using the receiving-mutual-impedance method," International Journal of Antennas and Propagation, March 2010.

7. Lui, H.-S., H. T. Hui, and M. S. Leong, "A note on the mutual coupling problems in transmitting and receiving antenna array," IEEE Antennas and Propagations Magazine, Vol. 51, No. 5, 171-176, 2009.
doi:10.1109/MAP.2009.5432083

8. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: a low mutual coupling design for array applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2936-2946, 2003.
doi:10.1109/TAP.2003.817983

9. Kim, C.-S., J.-S. Lim, S. Nam, K.-Y. Kang, and D. Ahn, "Equivalent circuit modeling of spiral defected ground structure for microstrip line," Electron. Lett., Vol. 38, 1109-1111, 2002.
doi:10.1049/el:20020742

10. Jiang, Y., Y. Yu, M. Yuan, and L. Wu, "A compact printed monopole array with defected ground structure to reduce the mutual coupling," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 14/15, 1963-1974, 2011.
doi:10.1163/156939311798072036

11. Bait-Suwailam, M. M., O. F. Siddiqui, and O. M. Ramahi, "Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators," IEEE Antennas Wireless Propag. Lett., Vol. 9, 876-878, 2010.
doi:10.1109/LAWP.2010.2074175

12. Lin, K.-C., C.-H. Wu, C.-H. Lai, and T.-G. Ma, "Novel dual-band decoupling network for two-element closely spaced array using synthesized microstrip lines," IEEE Trans. Antennas Propag., Vol. 60, No. 11, 5118-5128, 2012.
doi:10.1109/TAP.2012.2207687

13. Sharawi, M. S., A. B. Numan, M. U. Khan, and D. N. Aloi, "A dual-element dual-band MIMO antenna system with enhanced isolation for mobile terminals," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1006-1009, 2012.
doi:10.1109/LAWP.2012.2214433

14. Caloz, C., H. Okabe, T. Iwai, and T. Itoh, "A simple and accurate model for microstrip structures with slotted ground plane," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 3, 127-129, 2004.
doi:10.1109/LMWC.2003.822564

15. Gupta, K. C., R. Garg, I. Bahl, and P. Bhartia, Microstrip lines and Slotlines, 2nd Ed., Artech House, 1996.

16. Ahn, D., J.-S. Park, C.-S. Kim, J. Kim, Y. Qian, and T. Itoh, "A design of the low-pass filter using the novel microstrip defected ground structure," IEEE Trans. Microwave Theory Techniques, Vol. 49, No. 1, 86-93, 2001.
doi:10.1109/22.899965

17. Pozar, D. M., Microwave Engineering, 3rd Ed., Wiley, 2005.

18. Axelrod, A., M. Kisliuk, and J. Maoz, "Broadband microstip-fed slot radiator," Microwave Journal, Vol. 32, 81-94, 1989.

19. Wu, H.-W., M.-H. Weng, Y.-K. Su, R.-Y. Yang, and C.-S. Ye, "An effective equivalent circuit model of slotted ground structures under planar microstrip," Microwave and Optical Technology Letters, Vol. 50, No. 10, 2651-2653, 2008.
doi:10.1002/mop.23779