1. Rappaport, T., S. Sun, R. Mayzus, et al. "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013.
doi:10.1109/ACCESS.2013.2260813 Google Scholar
2. Sulyman, A. I., A. T. Nassar, M. K. Samimi, et al. "Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands," IEEE Commun. Mag., 78-86, 2014.
doi:10.1109/MCOM.2014.6894456 Google Scholar
3. Wong, H., K. B. Ng, C. H. Chan, and K. M. Luk, "Printed antennas for millimeter wave application," International Workshop on Antenna Tech., 411-414, 2013. Google Scholar
4. Chin, K. S., H. T. Chang, J. A. Liu, et al. "28-GHz patch antenna arrays with PCB and LTCC substrates," Cross Strait Quad-Regional Radio Science and Wireless Technology Conference, Vol. 1, 355-358, 2011.
doi:10.1109/CSQRWC.2011.6036957 Google Scholar
5. Tong, K. F., K. Li, and T. Matsui, "Performance of millimeter-wave coplanar patch antennas on low-k materials," PIERS Online, Vol. 1, No. 1, 46-47, 2005.
doi:10.2529/PIERS041205194251 Google Scholar
6. Wang, D., H. Wong, K. B. Ng, and C. H. Chan, "Wideband shorted higher-order mode millimeter- wave patch antenna," IEEE Antennas and Propagation Society International Symposium, 5-6, 2012. Google Scholar
7. Balanis, C. A., Antenna Theory: Analysis and Design, Wiley-Interscience, New Jersey, 2005.
8. Jamaluddin, M. H., R. Gillard, R. Sauleau, et al. "A dielectric resonator antenna (DRA) re ecarray," Proc. European Microwave Conference, 25-28, 2009. Google Scholar
9. Shahadan, N. H., M. R. Kamarudin, N. A. Zainal, et al. "Investigation on feeding techniques for rectangular dielectric resonator antenna in higher-order mode for 5G applications," Applied Mechanics and Materials, Vol. 781, 2015. Google Scholar
10. Pan, Y. M., K. W. Leung, and K. M. Luk, "Design of the millimeter-wave rectangular dielectric resonator antenna using a higher-order mode," IEEE Trans. Antennas and Propag., Vol. 59, 2011. Google Scholar
11. Jamaluddin, M. H., R. Gillard, R. Sauleau, et al. "Dielectric resonator antenna re ectarray in Ka-band," Antenna and Propagation Society International Symposium (APSURSI), 1-4, 2010. Google Scholar
12. Bijumon, P. V., A. P. Freundorfer, M. Sayer, and Y. M. M. Antar, "On-chip silicon integrated cylindrical dielectric resonator antenna for millimeter wave applications," Signals, Systems and Electronic International Symposium, 489-492, 2007. Google Scholar
13. Wang, K. X. and H. Wong, "A circularly polarized antenna by using rotated-stair dielectric resonator," IEEE Antennas and Wireless Propag Letters, Vol. 14, 787-790, 2015.
doi:10.1109/LAWP.2014.2385475 Google Scholar
14. Petosa, A., Dielectric Resonator Antenna Handbook, Artech House, Norwood, MA, 2007.
15. Luk, K. M. and K. W. Leung (eds.), Dielectric Resonator Antennas, Research Studies Press, London, UK, 2003.
16. Petosa, A. and A. Ittipiboon, "Dielectric resonator antennas: A historical review and the current state of the art," IEEE Antennas and Propag. Mag., Vol. 52, 2010. Google Scholar
17. Costanzo, S., I. Venneri, G. Di Massa, and G. Amendola, "Hybrid array antenna for broadband millimeter-wave applications," Progress In Electromagnetics Research, 173-183, 2008.
doi:10.2528/PIER08051404 Google Scholar
18. Lai, Q. H., G. Almpanis, C. Fumeaux, et al. "Comparison of the radiation efficiency for the dielectric resonator antenna and the microstrip antenna at Ka band," IEEE Trans. Antennas Propag., Vol. 56, No. 11, 3589-3592, 2008.
doi:10.1109/TAP.2008.2005551 Google Scholar
19. Mongia, R. K. and A. Ittipiboon, "Theoretical and experimental investigation on rectangular dielectric resonator antenna," IEEE Trans. Antennas Propag., Vol. 45, 1997. Google Scholar
20., CST MICROWAVE STUDIO 2014, CST Computer Simulation Technology AG, 2015.
21. Maina, I., T. A. Rahman, and M. Khalily, "Bandwidth enhanced and sidelobes level reduced radial line slot array antenna at 28 GHz for 5G next generation mobile communication," ARPN Journal of Engin. Applied Sciences, Vol. 10, 2015. Google Scholar