1. Oliver, C. and S. Quegan, Understanding Synthetic Aperture Radar Images, Artech House, 1998.
2. Cloude, S. and E. Pottier, "A review of target decomposition theorems in radar polarimetry," IEEE Trans. Geosci. Remote Sens., Vol. 34, No. 2, 498-518, Mar. 1996.
doi:10.1109/36.485127 Google Scholar
3. Cloude, S. and E. Pottier, "An entropy based classification scheme for land applications of polarimetric SAR," IEEE Trans. Geosci. Remote Sens., Vol. 35, No. 1, 68-78, Jan. 1997.
doi:10.1109/36.551935 Google Scholar
4. Park, S.-E. and W. M. Moon, "Unsupervised classification of scattering mechanisms in polarimetric SAR data using fuzzy logic in entropy and alpha plane," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 8, 2652-2664, Aug. 2007.
doi:10.1109/TGRS.2007.897691 Google Scholar
5. Salehi, M., M. R. Sahebi, and Y. Maghsoudi, "Improving the accuracy of urban land cover classification using RADARSAT-2 PolSAR data," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., Vol. 7, No. 4, 1394-1401, Apr. 2014.
doi:10.1109/JSTARS.2013.2273074 Google Scholar
6. Bhattacharya, A. and R. Touzi, "Polarimetric SAR urban classification using the Touzi target scattering decomposition," Can. J. Remote Sens., Vol. 37, No. 4, 323-332, Aug. 2011.
doi:10.5589/m11-042 Google Scholar
7. Antropov, O., Y. Rauste, H. Astola, T. Hame, and M. T. Hallikainen, "Land cover and soil type mapping from spaceborne PolSAR data at L-band with probabilistic neural network," IEEE Trans. Geosci. Remote Sens., Vol. 52, No. 9, 5256-5270, Sep. 2014.
doi:10.1109/TGRS.2013.2287712 Google Scholar
8. Lee, J. S., M. R. Grunes, T. L. Ainsworth, L. Du, D. L. Schuler, and S. R. Cloude, "Unsupervised classification of polarimetric SAR imagery based on target decomposition and Wishart distribution," IEEE Trans. Geosci. Remote Sens., Vol. 37, No. 5, 2249-2258, Sep. 1999.
doi:10.1109/36.789621 Google Scholar
9. Ferro-Famil, L., E. Pottier, and J. S. Lee, "Unsupervised classification of multifrequency and fully polarimetric SAR images based on the H/A/Alpha --- Wishart classifier," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 11, 2332-2342, Nov. 2001.
doi:10.1109/36.964969 Google Scholar
10. Yahia, M. and Z. Belhadj, "Unsupervised classification of polarimetric SAR images using neural networks," Proc. IEEE Int. Geosci. Remote Sens. Symp., 203-205, Jul. 2003. Google Scholar
11. Dabboor, M., J. M. Collins, V. Karathanassi, and A. Braun, "An unsupervised classification approach for polarimetric SAR data based on the Chernoff distance for complex Wishart distribution," IEEE Trans. Geosci. Remote Sens., Vol. 51, No. 7, 4200-4213, Jul. 2013.
doi:10.1109/TGRS.2012.2227755 Google Scholar
12. Cao, F., W. Hong, Y.Wu, and E. Pottier, "An unsupervised segmentation with an adaptive number of clusters using the SPAN/H=α=A space and the complex Wishart clustering for fully polarimetric SAR data analysis," IEEE Trans. Geosci. Remote Sens., Vol. 45, No. 11, 3454-3467, Nov. 2007.
doi:10.1109/TGRS.2007.907601 Google Scholar
13. Zhang, Y., L. Wu, and G. Wei, "A new classifier for polarimetric SAR images," Progress In Electromagnetics Research, Vol. 94, 83-104, 2009.
doi:10.2528/PIER09041905 Google Scholar
14. Gou, S., X. Qiao, X. Zhang, W.Wang, and F. Du, "Eigenvalue analysis-based approach for Pol-SAR image classification," IEEE Trans. Geosci. Remote Sens., Vol. 52, No. 2, 805-818, Feb. 2014.
doi:10.1109/TGRS.2013.2244096 Google Scholar
15. Goodman, J. W., "Some fundamental properties of speckle," J. Opt. Soc. Amer., Vol. 66, No. 11, 1145-1150, Nov. 1976.
doi:10.1364/JOSA.66.001145 Google Scholar
16. Lee, J. S., "Speckle analysis and smoothing of synthetic aperture radar images," Comput. Graph. Image Process., Vol. 17, 24-32, 1981.
doi:10.1016/S0146-664X(81)80005-6 Google Scholar
17. Yahia, M. and Z. Belhadj, "Polarimetric SAR denoising uing adaptive prediction technique," Proc. IEEE Int. Geosci. Remote Sens. Symp., 4025-4027, Jul. 2006. Google Scholar
18. Lopez-Martinez, C., E. Pottier, and S. Cloude, "Statistical assessment of eigenvector-based target decomposition theorems in radar polarimetry," IEEE Trans. Geosci. Remote Sens., Vol. 43, No. 9, 2058-2074, Sep. 2005.
doi:10.1109/TGRS.2005.853934 Google Scholar
19. Foucher, S., G. Farage, and G. B. Benie, "Application of bootstrap techniques for the estimation of target decomposition parameters in radar polarimetry," Proc. IEEE Int. Geosci. Remote Sens. Symp., 2224-2228, Jun. 2007. Google Scholar
20. Lee, J. S., T. Ainsworth, J. Kelly, and C. Lopez-Martinez, "Evaluation and bias removal of multi-look effect on entropy/alpha/anisotropy in polarimetric SAR decomposition," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 10, 3039-3052, Oct. 2008.
doi:10.1109/TGRS.2008.922033 Google Scholar
21. Lopez-Martinez, C., A. Alonso-Gonzalez, and X. Fµabregas, "Perturbation analysis of eigenvector-based target decomposition theorems in radar polarimetry," IEEE Trans. Geosci. Remote Sens., Vol. 42, No. 4, 2081-2086, Apr. 2014.
doi:10.1109/TGRS.2013.2257802 Google Scholar
22. Yahia, M. and T. Aguili, "Characterization and correction of multilook effects on eigendecomposition parameters in PolSAR images," IEEE Trans. Geosci. Remote Sens., Vol. 53, No. 9, 5237-5246, Sep. 2015.
doi:10.1109/TGRS.2015.2419717 Google Scholar
23. Lee, J. S., M. R. Grunes, and G. de Grandi, "Polarimetric SAR speckle filtering and its implication for classification," IEEE Trans. Geosci. Remote Sens., Vol. 37, No. 5, 2363-2373, Sep. 1999.
doi:10.1109/36.789635 Google Scholar
24. Bezdek, J. C., R. Ehrlich, and W. Full, "FCM: The fuzzy c-means clustering algorithm," Computer and Geosciences, Vol. 10, 191-203, 1984.
doi:10.1016/0098-3004(84)90020-7 Google Scholar
25. Duquenoy, M., J. P. Ovarlez, L. Ferro-Famil, and E. Pottier, "Supervised classification of scatterers on SAR imaging based on incoherent polarimetric time-frequency signatures," European Signal Processing Conference, 764-768, Aug. 2009. Google Scholar
26. Lippmann, R. P., "An introduction to computing with neural nets," IEEE ASSP Magazine, 4-22, Apr. 1994. Google Scholar