1. Hosman, R. J., B. Bernard, and H. Fourquet, "Active and passive side stick controllers in manual aircraft control," Systems, Man and Cybernetics, 1990. Google Scholar
2. Hanke, D. and C. Herbst, "Active sidestick technology: A means for improving situational awareness," Aerospace Science and Technology, Vol. 3, 1999.
doi:10.1016/S1270-9638(99)00107-8 Google Scholar
3. Hegg, J. W., M. P. Smith, L. Yount, and J. Todd, "Features of active sidestick controllers," IEEE Aerospace and Electronics Systems Magazine, Vol. 7, 1995. Google Scholar
4. Jang, S. M., J. Y. Choi, S. H. Lee, H. W. Cho, and W. B. Jang, "Analysis and experimental verification of moving-magnet linear actuator with cylindrical Halbach array," IEEE Trans. on Magnetics, Vol. 40, No. 4, 2068-2070, 2004.
doi:10.1109/TMAG.2004.832157 Google Scholar
5. Ben Ahmed, H., B. Multon, and M. Ruellan, "Actionneurs lineaires directs et indirects," revue3EI, 38-58, 2004. Google Scholar
6. Amara, Y. and G. Barakat, "Analytical modeling of magnetic field in surface mounted permanent magnet tubular linear machines," IEEE Trans. on Magnetics, Vol. 46, No. 11, 3870-3884, 2010.
doi:10.1109/TMAG.2010.2053850 Google Scholar
7. Yan, L., L. Zhang, J. Y. Wang, Z. Jiao, C. Y. Chen, and I. M. Chen, "Magnetic field of tubular linear machines with dual Halbach array," Progress In Electromagnetic Research, Vol. 136, 283-299, 2013.
doi:10.2528/PIER12110302 Google Scholar
8. Allias, J. F., J. F. Llibre, C. Henaux, Y. Briere, and D. Alazard, "A global approach for the study of forces developed by a tubular liear moving magnet actuator," XXI International Conference on Electrical Machines ICEM, 2014. Google Scholar
9. Allias, J. F., J. F. Llibre, D. Harribey, C. Henaux, and D. Alazard, "Approche globale de l etude des efforts developpes par un actionneur MMA tubulaire," Symposium de Genie Electrique SGE, 2014. Google Scholar
10. Mohammadi, S. and M. Mirsalim, "Analytical design framework for torque and back-EMF optimization, and inductance calculation in double-rotor radial-°ux air-cored permanent-magnet synchronous machine," IEEE Trans. on Magnetics, Vol. 50, No. 1, 2014.
doi:10.1109/TMAG.2013.2279129 Google Scholar
11. Chikouche, B. L., K. Boughrara, and R. Ibtiouen, "Cogging torque minimization of surface- mounted permanent magnet synchronous machines using hybrid magnet shapes," Progress In Electromagnetic Research, Vol. 62, 49-61, 2015.
doi:10.2528/PIERB14112302 Google Scholar
12. Bianchi, N., "Analytical computation of magnetic fields and thrusts in a tubular PM linear servo motor," IEEE Industry Application Conference, Vol. 1, 21-28, Rome, Italy, 2000. Google Scholar
13. Trumper, D. L., W. J. Kim, and M. E. Williams, "Design and analysis framework for linear permanent magnet machines," IEEE Trans. on Industry Applications, Vol. 32, No. 2, 1996.
doi:10.1109/28.491486 Google Scholar
14. Harribey, D., J. F. Allias, J. F. Llibre, and C. Henaux, "Dispositif de commande passif magnetique," Patent, WO2015150439A2, 2015. Google Scholar
15. Allias, J. F., "Dimensionnement d un actionneur pour organe de pilotage a entrainement direct avec redondance passive magnetique," These de l Institut National Polytechnique de Toulouse, 2015. Google Scholar
16. Dubas, F., C. Espanet, and A. Miraoui, "Modelisation analytique et maximisation de l'induction magnetique a vide d'un moteur a aimants montes en surface," Electrotechnique du Futur, 2003. Google Scholar
17. Fitan, E., F. Messine, and B. Nogarede, "The electromagnetic actuator design problem: A general and rational approach," IEEE Trans. on Magnetics, Vol. 40, No. 3, 2004.
doi:10.1109/TMAG.2004.827183 Google Scholar
18. Naimi, D. and T. Bouktir, "Optimal power flow using interior point method," International Conference on Electrical Engineering Design and Technologies, Hammamet, Tunisia, 2007. Google Scholar