Vol. 69
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-09-08
Comparison, with an Analytical Optimization Process, of Two Synchronous Halbach Permanent Magnet Machines, for a Direct Drive Stick Application
By
Progress In Electromagnetics Research B, Vol. 69, 47-59, 2016
Abstract
This paper deals with the comparison of two actuators with different frameworks, for a direct drive active stick application. Each actuator will be compared with three different sets of specifications which impose many constraints as: high torque, small volume, low temperature, etc. The high required torque per unit of mass and the small volume allowed involve the use of synchronous Halbach permanent magnet (PM) topologies which have the best torque performances. In this article, an analysis and a comparison of two optimized actuators designed with a Halbach configuration are done. It is a linear actuator and a double airgap rotating actuator. The electromagnetic torque is calculated by the Laplace force for which the flux density generated by the Halbach PM configuration is defined by a Laplace equation and a Poisson equation. An analytical optimization under a set of nonlinear constraints will be realized with the analytical expressions of the torque we got previously. In order to validate the analytical model, finite-element analysis (FEA) simulations will be performed on the optimized structure. Finally, two actuators will be compared in order to give the best compromises for the stick application for each set of specifications.
Citation
Jean-Francois Allias, Jean-Francois Llibre, Carole Henaux, Yves Briere, and Soheib Fergani, "Comparison, with an Analytical Optimization Process, of Two Synchronous Halbach Permanent Magnet Machines, for a Direct Drive Stick Application," Progress In Electromagnetics Research B, Vol. 69, 47-59, 2016.
doi:10.2528/PIERB16041104
References

1. Hosman, R. J., B. Bernard, and H. Fourquet, "Active and passive side stick controllers in manual aircraft control," Systems, Man and Cybernetics, 1990.

2. Hanke, D. and C. Herbst, "Active sidestick technology: A means for improving situational awareness," Aerospace Science and Technology, Vol. 3, 1999.
doi:10.1016/S1270-9638(99)00107-8

3. Hegg, J. W., M. P. Smith, L. Yount, and J. Todd, "Features of active sidestick controllers," IEEE Aerospace and Electronics Systems Magazine, Vol. 7, 1995.

4. Jang, S. M., J. Y. Choi, S. H. Lee, H. W. Cho, and W. B. Jang, "Analysis and experimental verification of moving-magnet linear actuator with cylindrical Halbach array," IEEE Trans. on Magnetics, Vol. 40, No. 4, 2068-2070, 2004.
doi:10.1109/TMAG.2004.832157

5. Ben Ahmed, H., B. Multon, and M. Ruellan, "Actionneurs lineaires directs et indirects," revue3EI, 38-58, 2004.

6. Amara, Y. and G. Barakat, "Analytical modeling of magnetic field in surface mounted permanent magnet tubular linear machines," IEEE Trans. on Magnetics, Vol. 46, No. 11, 3870-3884, 2010.
doi:10.1109/TMAG.2010.2053850

7. Yan, L., L. Zhang, J. Y. Wang, Z. Jiao, C. Y. Chen, and I. M. Chen, "Magnetic field of tubular linear machines with dual Halbach array," Progress In Electromagnetic Research, Vol. 136, 283-299, 2013.
doi:10.2528/PIER12110302

8. Allias, J. F., J. F. Llibre, C. Henaux, Y. Briere, and D. Alazard, "A global approach for the study of forces developed by a tubular liear moving magnet actuator," XXI International Conference on Electrical Machines ICEM, 2014.

9. Allias, J. F., J. F. Llibre, D. Harribey, C. Henaux, and D. Alazard, "Approche globale de l etude des efforts developpes par un actionneur MMA tubulaire," Symposium de Genie Electrique SGE, 2014.

10. Mohammadi, S. and M. Mirsalim, "Analytical design framework for torque and back-EMF optimization, and inductance calculation in double-rotor radial-°ux air-cored permanent-magnet synchronous machine," IEEE Trans. on Magnetics, Vol. 50, No. 1, 2014.
doi:10.1109/TMAG.2013.2279129

11. Chikouche, B. L., K. Boughrara, and R. Ibtiouen, "Cogging torque minimization of surface- mounted permanent magnet synchronous machines using hybrid magnet shapes," Progress In Electromagnetic Research, Vol. 62, 49-61, 2015.
doi:10.2528/PIERB14112302

12. Bianchi, N., "Analytical computation of magnetic fields and thrusts in a tubular PM linear servo motor," IEEE Industry Application Conference, Vol. 1, 21-28, Rome, Italy, 2000.

13. Trumper, D. L., W. J. Kim, and M. E. Williams, "Design and analysis framework for linear permanent magnet machines," IEEE Trans. on Industry Applications, Vol. 32, No. 2, 1996.
doi:10.1109/28.491486

14. Harribey, D., J. F. Allias, J. F. Llibre, and C. Henaux, "Dispositif de commande passif magnetique," Patent, WO2015150439A2, 2015.

15. Allias, J. F., "Dimensionnement d un actionneur pour organe de pilotage a entrainement direct avec redondance passive magnetique," These de l Institut National Polytechnique de Toulouse, 2015.

16. Dubas, F., C. Espanet, and A. Miraoui, "Modelisation analytique et maximisation de l'induction magnetique a vide d'un moteur a aimants montes en surface," Electrotechnique du Futur, 2003.

17. Fitan, E., F. Messine, and B. Nogarede, "The electromagnetic actuator design problem: A general and rational approach," IEEE Trans. on Magnetics, Vol. 40, No. 3, 2004.
doi:10.1109/TMAG.2004.827183

18. Naimi, D. and T. Bouktir, "Optimal power flow using interior point method," International Conference on Electrical Engineering Design and Technologies, Hammamet, Tunisia, 2007.