Vol. 62
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-09-10
A Compact n -Way Wilkinson Power Divider Using a Novel Coaxial Cable Implementation for VHF Band
By
Progress In Electromagnetics Research Letters, Vol. 62, 49-55, 2016
Abstract
A novel implementation of N-way Wilkinson power divider using series and parallel combination of coaxial cables has been proposed in this paper. This arrangement results in a very compact power divider at VHF and lower frequencies, has good isolation between all the ports and is capable of handling high power with a low insertion loss. Frequency tuning and phase equalisation are easily accomplished using this technique. The measured results on fabricated 7-way and 4-way power dividers exhibited good input and output matching as well as amplitude and phase balance with an overall length of less than λ/8 at 221 MHz, with potential for further reduction in length.
Citation
Sandeepak S. Kakatkar, Prafull Irpache, and Kamla Prasan Ray, "A Compact n -Way Wilkinson Power Divider Using a Novel Coaxial Cable Implementation for VHF Band," Progress In Electromagnetics Research Letters, Vol. 62, 49-55, 2016.
doi:10.2528/PIERL16061205
References

1. Wilkinson, E. J., "An N-way hybrid power divider," IRE Tran. MTT, 116-118, Jan. 1960.
doi:10.1109/TMTT.1960.1124668

2. Grebennikov, A., "Power combiners, impedance transformers and directional couplers: Part II," High Frequency Electronics, 42-53, Jan. 2008.

3. Aminov, G., E. Levi, and H. Matzner, "RadialWilkinson power divider," COMCAS 2011, Nov. 2011.

4. Badger, G., "A new class of coaxial line transformers," Ham Radio Mag., Part 1, 12-18, Feb. 1980, and Part 2, 18-29, 1980.

5. Munk, B. A., Metamaterials: Critique and Alternatives, John Wiley & Sons, Inc., New Jersey, 2009.
doi:10.1002/9780470423875