1. Hong, J. S., Microstrip Filters for RF/Microwave Applications, Wiley, New York, 2011.
doi:10.1002/9780470937297
2. Lei, Z., S. Sheng, and R. Li, Microstrip Filters for Rf/Microwave Applications, Wiley, New Jersey, 2012.
3. Zhang, R. and L. Zhu, "Synthesis design of a wideband bandpass filter with inductively coupled short-circuited multi-mode resonator," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 10, 509-511, Oct. 2012.
doi:10.1109/LMWC.2012.2218096 Google Scholar
4. Wu, X.-H., X.-B. Wei., H.-G. Lv., and Y. Shi, "Compact bandpass filter with multiple transmission zeros using modified stepped-impedance resonators," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 13, 1741-1748, Oct. 2015.
doi:10.1080/09205071.2015.1060140 Google Scholar
5. Wu, C.-H., Y.-S. Lin, C.-H. Wang, and H. C. Chun, "Compact microstrip coupled-line bandpass filter with two cross-couplings for creating multiple transmission zeros," European Microwave Conference, Oct. 4–6, 2005. Google Scholar
6. Wang, H., Q. X. Chu, and J. Q. Gong, "A compact wideband microstrip filter using folded multiplemode resonator," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 5, 287-289, 2009.
doi:10.1109/LMWC.2009.2017591 Google Scholar
7. Ma, X.-B. and T. Jiang, "Wideband bandpass filter with controllable bandwidth and high selectivity using two different types of resonators," Microw. Opt. Technol. Lett., Vol. 57, No. 6, 1319-1323, 2015.
doi:10.1002/mop.29085 Google Scholar
8. Yu, C. C., C.-H. Kao, M.-H. Weng, and R.-Y. Yang, "Design of the compact wideband bandpass filter with low loss, high selectivity and wide stopband," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 12, 770-772, 2008.
doi:10.1109/LMWC.2008.2007691 Google Scholar
9. Huang, Y. J.-M., B. Zhang, and S. S. Li, "Novel compact quad-mode wideband bandpass filter with wide stopband using T-shaped resonator," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 3, 326-333, 2014.
doi:10.1080/09205071.2013.870053 Google Scholar
10. Feng, W., X. Gao, and W. Che, "Bandpass filters with improved selectivity based on dual-mode ring resonators," Progress In Electromagnetics Research Letters, Vol. 56, 1-7, 2015.
doi:10.2528/PIERL15072609 Google Scholar
11. Feng, W. J., W. Q. Che, Y. M. Chang, S. Y. Shi, and Q. Xue, "High selectivity fifth-order wideband bandpass filters with multiple transmission zeros based on transversal signal-interaction concepts," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 1, 89-97, 2013.
doi:10.1109/TMTT.2012.2227785 Google Scholar
12. Chen, H. and H. Zhao, "A novel microstrip bandpass filter with an elliptic-function response using improved dual-stub resonator," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 16, 2224-2231, 2015.
doi:10.1080/09205071.2015.1090348 Google Scholar
13. Chen, H., P. Tang, K Chen, H. Zhao, and H. Zhong, "Wideband dual-mode bandpass filter using a modified right-triangular patch resonator overlapped with input/output DMS," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 11, 1365-1371, 2013.
doi:10.1080/09205071.2013.808600 Google Scholar
14. Feng, W.-J., X. Gao, and W.-Q. Che, "Bandpass filters with multiple transmission zeros using open/shorted stubs," IET Microwave Antennas Propag., Vol. 9, No. 8, 769-774, 2015. Google Scholar
15. Park, J. S., J. S. Yun, and D. Ahn, "A design of the novel coupled-line bandpass filter using defected ground structure with wide stopband performance," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 9, 2037-2043, 2002.
doi:10.1109/TMTT.2002.802313 Google Scholar
16. Boutejdar, A., A. Elsherbini, and A. S. Omar, "Method for widening the reject-band in lowpass/ band-pass filters by employing coupled C-shaped defected ground structure," IET Microwaves. Antennas Propag., Vol. 2, No. 8, 759-765, 2008.
doi:10.1049/iet-map:20070270 Google Scholar
17. Boutejdar, A., A. Batmanov, A. Omar, and E. Burte, "A miniature 3.1GHz microstrip bandpass filter with suppression of spurious harmonics using multilayer technique and defected ground structure open-loop ring," Ultra-Wideband, Short Pulse Electromagnetics, Vol. 9, 171-178, 2010. Google Scholar
18. Song, K. and Q. Xue, "Novel broadband bandpass filters using Y-shaped dual-mode microstrip resonators," IEEE Microw. Wirel. Components Lett., Vol. 19, No. 9, 548-550, 2009.
doi:10.1109/LMWC.2009.2027058 Google Scholar
19. Luo, X., H. Qian, J.-G. Ma, and E.-P. Li, "Wideband bandpass filter with excellent selectivity using new CSRR-based resonator," Electron. Lett., Vol. 46, No. 20, 1390-1391, 2010.
doi:10.1049/el.2010.1817 Google Scholar
20. Mandal, M. K. and S. Sanyal, "Design of wide-band, sharp-rejection bandpass filters with parallelcoupled lines," IEEE Microw. Wirel. Components Lett., Vol. 16, No. 11, 597-599, 2006.
doi:10.1109/LMWC.2006.884904 Google Scholar
21. Chaimool, S. and P. Akkaraekthalin, "Miniaturized wideband bandpass filter with wide stopband using metamaterial-based resonator and defected ground structure," Radioengineering, Vol. 21, No. 2, 611-616, 2012. Google Scholar