Vol. 67
Latest Volume
All Volumes
PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-09-22
A Novel Wideband Bandpass Filter Using Coupled Lines and T-Shaped Transmission Lines with Wide Stopband on Low-Cost Substrate
By
Progress In Electromagnetics Research C, Vol. 67, 143-152, 2016
Abstract
This paper presents the design, simulation, fabrication and measurement of a wideband bandpass filter with wide stopband performance operating at 3.5 GHz. The proposed filter consists of two parallel coupled lines (T-PCL) centered by T-inverted shape. The location of transmission zeros can be adjusted by varying the physical lengths of T-inverted shape to improve the filter selectivity. The wide bandwidth is achieved through enhanced coupling between the input and the parallel coupled lines. Due to the transmission zeros in the lower and upper stopbands, the filter exhibits good performance including an extremely wide stopband and sharp attenuations near the passband together with low insertion and good return losses in the passband. The filter performance is investigated numerically by using CST-MWS. Finally, the microstrip wideband BPF with minimum insertion losses 0.3 dB, centered at 3.5 GHz with a 3-dB fraction bandwidth of 70 % and four transmission zeros is implemented and verified experimentally. In addition, good agreement between the simulated and measured results is achieved.
Citation
Lahcen Yechou, Abdelwahed Tribak, Mohamed Kacim, Jamal Zbitou, and Angel Mediavilla Sanchez, "A Novel Wideband Bandpass Filter Using Coupled Lines and T-Shaped Transmission Lines with Wide Stopband on Low-Cost Substrate," Progress In Electromagnetics Research C, Vol. 67, 143-152, 2016.
doi:10.2528/PIERC16062204
References

1. Hong, J. S., Microstrip Filters for RF/Microwave Applications, Wiley, New York, 2011.
doi:10.1002/9780470937297

2. Lei, Z., S. Sheng, and R. Li, Microstrip Filters for Rf/Microwave Applications, Wiley, New Jersey, 2012.

3. Zhang, R. and L. Zhu, "Synthesis design of a wideband bandpass filter with inductively coupled short-circuited multi-mode resonator," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 10, 509-511, Oct. 2012.
doi:10.1109/LMWC.2012.2218096

4. Wu, X.-H., X.-B. Wei., H.-G. Lv., and Y. Shi, "Compact bandpass filter with multiple transmission zeros using modified stepped-impedance resonators," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 13, 1741-1748, Oct. 2015.
doi:10.1080/09205071.2015.1060140

5. Wu, C.-H., Y.-S. Lin, C.-H. Wang, and H. C. Chun, "Compact microstrip coupled-line bandpass filter with two cross-couplings for creating multiple transmission zeros," European Microwave Conference, Oct. 4–6, 2005.

6. Wang, H., Q. X. Chu, and J. Q. Gong, "A compact wideband microstrip filter using folded multiplemode resonator," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 5, 287-289, 2009.
doi:10.1109/LMWC.2009.2017591

7. Ma, X.-B. and T. Jiang, "Wideband bandpass filter with controllable bandwidth and high selectivity using two different types of resonators," Microw. Opt. Technol. Lett., Vol. 57, No. 6, 1319-1323, 2015.
doi:10.1002/mop.29085

8. Yu, C. C., C.-H. Kao, M.-H. Weng, and R.-Y. Yang, "Design of the compact wideband bandpass filter with low loss, high selectivity and wide stopband," IEEE Microwave and Wireless Components Letters, Vol. 18, No. 12, 770-772, 2008.
doi:10.1109/LMWC.2008.2007691

9. Huang, Y. J.-M., B. Zhang, and S. S. Li, "Novel compact quad-mode wideband bandpass filter with wide stopband using T-shaped resonator," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 3, 326-333, 2014.
doi:10.1080/09205071.2013.870053

10. Feng, W., X. Gao, and W. Che, "Bandpass filters with improved selectivity based on dual-mode ring resonators," Progress In Electromagnetics Research Letters, Vol. 56, 1-7, 2015.
doi:10.2528/PIERL15072609

11. Feng, W. J., W. Q. Che, Y. M. Chang, S. Y. Shi, and Q. Xue, "High selectivity fifth-order wideband bandpass filters with multiple transmission zeros based on transversal signal-interaction concepts," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 1, 89-97, 2013.
doi:10.1109/TMTT.2012.2227785

12. Chen, H. and H. Zhao, "A novel microstrip bandpass filter with an elliptic-function response using improved dual-stub resonator," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 16, 2224-2231, 2015.
doi:10.1080/09205071.2015.1090348

13. Chen, H., P. Tang, K Chen, H. Zhao, and H. Zhong, "Wideband dual-mode bandpass filter using a modified right-triangular patch resonator overlapped with input/output DMS," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 11, 1365-1371, 2013.
doi:10.1080/09205071.2013.808600

14. Feng, W.-J., X. Gao, and W.-Q. Che, "Bandpass filters with multiple transmission zeros using open/shorted stubs," IET Microwave Antennas Propag., Vol. 9, No. 8, 769-774, 2015.

15. Park, J. S., J. S. Yun, and D. Ahn, "A design of the novel coupled-line bandpass filter using defected ground structure with wide stopband performance," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 9, 2037-2043, 2002.
doi:10.1109/TMTT.2002.802313

16. Boutejdar, A., A. Elsherbini, and A. S. Omar, "Method for widening the reject-band in lowpass/ band-pass filters by employing coupled C-shaped defected ground structure," IET Microwaves. Antennas Propag., Vol. 2, No. 8, 759-765, 2008.
doi:10.1049/iet-map:20070270

17. Boutejdar, A., A. Batmanov, A. Omar, and E. Burte, "A miniature 3.1GHz microstrip bandpass filter with suppression of spurious harmonics using multilayer technique and defected ground structure open-loop ring," Ultra-Wideband, Short Pulse Electromagnetics, Vol. 9, 171-178, 2010.

18. Song, K. and Q. Xue, "Novel broadband bandpass filters using Y-shaped dual-mode microstrip resonators," IEEE Microw. Wirel. Components Lett., Vol. 19, No. 9, 548-550, 2009.
doi:10.1109/LMWC.2009.2027058

19. Luo, X., H. Qian, J.-G. Ma, and E.-P. Li, "Wideband bandpass filter with excellent selectivity using new CSRR-based resonator," Electron. Lett., Vol. 46, No. 20, 1390-1391, 2010.
doi:10.1049/el.2010.1817

20. Mandal, M. K. and S. Sanyal, "Design of wide-band, sharp-rejection bandpass filters with parallelcoupled lines," IEEE Microw. Wirel. Components Lett., Vol. 16, No. 11, 597-599, 2006.
doi:10.1109/LMWC.2006.884904

21. Chaimool, S. and P. Akkaraekthalin, "Miniaturized wideband bandpass filter with wide stopband using metamaterial-based resonator and defected ground structure," Radioengineering, Vol. 21, No. 2, 611-616, 2012.