Vol. 62
Latest Volume
All Volumes
PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2016-09-04
A Compact Differential-Fed Half-Elliptic Monopole Antenna with Triple Band-Notched Function
By
Progress In Electromagnetics Research Letters, Vol. 62, 35-40, 2016
Abstract
A compact half-elliptic monopole antenna with triple notched-bands for UWB application, which is driven with differential feeding systems, is proposed. The basic antenna consists of two symmetrical half-elliptic patches and a modified ground plane. To reject the 5.5-GHz WLAN band effectively, two pairs of Ω-shaped strips are placed as parasitic elements close to the feedline. By introducing rectangular SRRs and an Ω-shaped slot on the radiators, the operating bands of 3.5-GHz WiMAX and 8-GHz ITU can be notched, respectively. Compared with conventional singleended feed antennas, the proposed differential-fed antenna can achieve better polarization purity, especially in the high-frequency band.
Citation
Yuan Xu, Hui Li, Ying-Zeng Yin, and Zhichao Deng, "A Compact Differential-Fed Half-Elliptic Monopole Antenna with Triple Band-Notched Function," Progress In Electromagnetics Research Letters, Vol. 62, 35-40, 2016.
doi:10.2528/PIERL16070601
References

1. Federal Communications Commission "Federal Communications Commission revision of Part 15 of the commission’s rules regarding ultra-wideband transmission system from 3.1 to 10.6 GHz,", Washington, DC, USA, 2002.

2. Li, M., M. Chen, W. Q. Che, and Q. Xue, "UWB Planar Inverted-F Antenna (PIFA) with differential feeding technique," IEEE International Conference on Ultra-Wideband, 2010.
doi:10.1109/TAP.2012.2220100

3. Li, M. J. and K. M. Luk, "A differential-fed magneto-electric dipole antenna for UWB applications," IEEE Trans. Antennas Propag., Vol. 61, 92-99, Jan. 2013.
doi:10.1109/LAWP.2012.2186552

4. Mehranpour, M., J. Nourinia, C. Ghobadi, and M. Ojaroudi, "Dual band-notched square monopole antenna for ultrawideband applications," IEEE Antennas Wireless Propag. Lett., Vol. 11, 172-175, 2012.
doi:10.1109/LAWP.2014.2306812

5. Sarkar, D., K. V. Srivastava, and K. Saurav, "A Compact microstrip-fed triple band-notched UWB monopole antenna," IEEE Antennas Wireless Propag. Lett., Vol. 13, 396-399, 2014.
doi:10.1109/LAWP.2014.2332449

6. Aghdam, S. A., "A novel UWB monopole antenna with tunable notched behavior using varactor diode," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1243-1246, 2014.
doi:10.1109/LAWP.2012.2228623

7. Wu, H. W., J. Zhang, L. Y. Yan, L. P. Han, R. C. Yang, and W. M. Zhang, "Differential dual-band antenna-in-package with T-shaped slots," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1446-1449, 2012.
doi:10.1049/el.2014.2126

8. Wang, J. H. and Y. Z. Yin, "Differential-fed UWB microstrip antenna with improved radiatio patterns," Electron. Lett., Vol. 50, 1412-1414, 2014.
doi:10.1109/LAWP.2014.2332355

9. Tu, Z. H., W. A. Li, and Q. X. Chu, "Single-layer differential CPW-fed notch-band tapered-slot UWB antenna," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1296-1299, 2014.